Search Results

Now showing 1 - 2 of 2
  • Item
    Interatomic and Intermolecular Coulombic Decay
    (Washington, DC : ACS Publ., 2020) Jahnke, Till; Hergenhahn, Uwe; Winter, Bernd; Dörner, Reinhard; Frühling, Ulrike; Demekhin, Philipp V.; Gokhberg, Kirill; Cederbaum, Lorenz S.; Ehresmann, Arno; Knie, André; Dreuw, Andreas
    Interatomic or intermolecular Coulombic decay (ICD) is a nonlocal electronic decay mechanism occurring in weakly bound matter. In an ICD process, energy released by electronic relaxation of an excited atom or molecule leads to ionization of a neighboring one via Coulombic electron interactions. ICD has been predicted theoretically in the mid nineties of the last century, and its existence has been confirmed experimentally approximately ten years later. Since then, a number of fundamental and applied aspects have been studied in this quickly growing field of research. This review provides an introduction to ICD and draws the connection to related energy transfer and ionization processes. The theoretical approaches for the description of ICD as well as the experimental techniques developed and employed for its investigation are described. The existing body of literature on experimental and theoretical studies of ICD processes in different atomic and molecular systems is reviewed. © 2020 American Chemical Society
  • Item
    Evidence for Efficient Pathway to Produce Slow Electrons by Ground-state Dication in Clusters
    (Bristol : IOP Publ., 2017) You, Daehyun; Fukuzawa, Hironobu; Sakakibara, Yuta; Takanashi, Tsukasa; Ito, Yuta; Maliyar, Gianluigi G.; Motomura, Koji; Nagaya, Kiyonobu; Nishiyama, Toshiyuki; Asa, Kazuki; Sato, Yuhiro; Saito, Norio; Oura, Masaki; Schöffler, Markus; Kastirke, Gregor; Hergenhahn, Uwe; Stumpf, Vasili; Gohkberg, Kirill; Kuleff, Alexander I.; Cederbaum, Lorenz S.; Ueda, Kiyoshi
    We present an experimental evidence for a so-far unobserved, but potentially very important step relaxation cascades following inner-shell ionization of a composite system: Multiply charged ionic states created after Auger decay may be neutralized by electron transfer from a neighboring species, producing at the same time a low-energy free electron. This electron transfer-mediated decay (ETMD) called process is effective even after Auger decay into the dicationic ground state. Here, we report the ETMD of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.