Search Results

Now showing 1 - 3 of 3
  • Item
    Quasi‐2‐Day Wave in Low‐Latitude Atmospheric Winds as Viewed From the Ground and Space During January–March, 2020
    (Hoboken, NJ : Wiley, 2021) He, Maosheng; Chau, Jorge L.; Forbes, Jeffrey M.; Zhang, Xiaoli; Englert, Christoph R.; Harding, Brian J.; Immel, Thomas J.; Lima, Lourivaldo M.; Bhaskar Rao, S. Vijaya; Ratnam, M. Venkat; Li, Guozhu; Harlander, John M.; Marr, Kenneth D.; Makela, Jonathan J.
    Horizontal winds from four low-latitude (±15°) specular meteor radars (SMRs) and the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument on the ICON satellite, are combined to investigate quasi-2-day waves (Q2DWs) in early 2020. SMRs cover 80–100 km altitude whereas MIGHTI covers 95–300 km. Q2DWs are the largest dynamical feature of the summertime middle atmosphere. At the overlapping altitudes, comparisons between the derived Q2DWs exhibit excellent agreement. The SMR sensor array analyses show that the dominant zonal wavenumbers are s = +2 and + 3, and help resolve ambiguities in MIGHTI results. We present the first Q2DW depiction for s = +2 and s = +3 between 95 and 200 km, and show that their amplitudes are almost invariant between 80 and 100 km. Above 106 km, Q2DW amplitudes and phases present structures that might result from the superposition of Q2DWs and their aliased secondary waves.
  • Item
    High-Order Solar Migrating Tides Quench at SSW Onsets
    (Hoboken, NJ : Wiley, 2020) He, Maosheng; Forbes, Jeffrey M.; Chau, Jorge L.; Li, Guozhu; Wan, Weixing; Korotyshkin, Dmitry V.
    Sudden stratospheric warming events (SSWs) are the most spectacular atmospheric vertical coupling processes, well-known for being associated with diverse wave activities in the upper atmosphere and ionosphere. The first four solar tidal harmonics have been reported as being engaged. Here, combining mesospheric winds detected by three midlatitude radars, we demonstrate at least the first six harmonics that occurred during SSW 2018. Wave number diagnosis demonstrates that all six harmonics are dominated by migrating components. Wavelet analyses reveal that the fourth, fifth, and sixth harmonics quench after the SSW onset. The six harmonics and the quenching appear also in a statistical analysis based on near-12-year observations from one of the radars. We attribute the quenching to reversal of the background eastward wind. ©2020. The Authors.
  • Item
    Quasi‐10‐Day Wave and Semidiurnal Tide Nonlinear Interactions During the Southern Hemispheric SSW 2019 Observed in the Northern Hemispheric Mesosphere
    (Hoboken, NJ : Wiley, 2020) He, Maosheng; Chau, Jorge L.; Forbes, Jeffrey M.; Thorsen, Denise; Li, Guozhu; Siddiqui, Tarique Adnan; Yamazaki, Yosuke; Hocking, Wayne K.
    Mesospheric winds from three longitudinal sectors at 65°N and 54°N latitude are combined to diagnose the zonal wave numbers (m) of spectral wave signatures during the Southern Hemisphere sudden stratospheric warming (SSW) 2019. Diagnosed are quasi-10- and 6-day planetary waves (Q10DW and Q6DW, m = 1), solar semidiurnal tides with m = 1, 2, 3 (SW1, SW2, and SW3), lunar semidiurnal tide, and the upper and lower sidebands (USB and LSB, m = 1 and 3) of Q10DW-SW2 nonlinear interactions. We further present 7-year composite analyses to distinguish SSW effects from climatological features. Before (after) the SSW onset, LSB (USB) enhances, accompanied by the enhancing (fading) Q10DW, and a weakening of climatological SW2 maximum. These behaviors are explained in terms of Manley-Rowe relation, that is, the energy goes first from SW2 to Q10DW and LSB, and then from SW2 and Q10DW to USB. Our results illustrate that the interactions can explain most wind variabilities associated with the SSW. © 2020. The Authors.