Search Results

Now showing 1 - 2 of 2
  • Item
    Middle- and High-Latitude Mesosphere and Lower Thermosphere Mean Winds and Tides in Response to Strong Polar-Night Jet Oscillations
    (Hoboken, NJ : Wiley, 2019) Conte, J. Federico; Chau, Jorge L.; Peters, Dieter H.W.
    The dynamical behavior of the mesosphere and lower thermosphere (MLT) region during strongly disturbed wintertime conditions commonly known as polar-night jet oscillations (PJOs) is described in detail and compared to other wintertime conditions. For this purpose, wind measurements provided by two specular meteor radars located at Andenes (69°N, 16°E) and Juliusruh (54°N, 13°E) are used to estimate horizontal mean winds and tides as an observational basis. Winds and tidal main features are analyzed and compared for three different cases: major sudden stratospheric warming (SSW) with (a) strong PJO event, (b) non-PJO event, and (c) no major SSWs. We show that the distinction into strong PJOs, non-PJOs, and winters with no major SSWs is better suited to identify differences in the behavior of the mean winds and tides during the boreal winter. To assess the impact of the stratospheric disturbed conditions on the MLT region, we investigate the 30-year nudged simulation by the Extended Canadian Middle Atmosphere Model. Analysis of geopotential height disturbances suggests that changes in the location of the polar vortex at mesospheric heights are responsible for the jets observed in the MLT mean winds during strong PJOs, which in turn influence the evolution of semidiurnal tides by increasing or decreasing their amplitudes depending on the tidal component. © 2019. The Authors.
  • Item
    Improving ionospheric predictability requires accurate simulation of the mesospheric polar vortex
    (Lausanne : Frontiers Media, 2022) Harvey, V. Lynn; Randall, Cora E.; Bailey, Scott M.; Becker, Erich; Chau, Jorge L.; Cullens, Chihoko Y.; Goncharenko, Larisa P.; Gordley, Larry L.; Hindley, Neil P.; Lieberman, Ruth S.; Liu, Han-Li; Megner, Linda; Palo, Scott E.; Pedatella, Nicholas M.; Siskind, David E.; Sassi, Fabrizio; Smith, Anne K.; Stober, Gunter; Stolle, Claudia; Yue, Jia
    The mesospheric polar vortex (MPV) plays a critical role in coupling the atmosphere-ionosphere system, so its accurate simulation is imperative for robust predictions of the thermosphere and ionosphere. While the stratospheric polar vortex is widely understood and characterized, the mesospheric polar vortex is much less well-known and observed, a short-coming that must be addressed to improve predictability of the ionosphere. The winter MPV facilitates top-down coupling via the communication of high energy particle precipitation effects from the thermosphere down to the stratosphere, though the details of this mechanism are poorly understood. Coupling from the bottom-up involves gravity waves (GWs), planetary waves (PWs), and tidal interactions that are distinctly different and important during weak vs. strong vortex states, and yet remain poorly understood as well. Moreover, generation and modulation of GWs by the large wind shears at the vortex edge contribute to the generation of traveling atmospheric disturbances and traveling ionospheric disturbances. Unfortunately, representation of the MPV is generally not accurate in state-of-the-art general circulation models, even when compared to the limited observational data available. Models substantially underestimate eastward momentum at the top of the MPV, which limits the ability to predict upward effects in the thermosphere. The zonal wind bias responsible for this missing momentum in models has been attributed to deficiencies in the treatment of GWs and to an inaccurate representation of the high-latitude dynamics. In the coming decade, simulations of the MPV must be improved.