Search Results

Now showing 1 - 3 of 3
  • Item
    Single Molecule Magnetism with Strong Magnetic Anisotropy and Enhanced Dy∙∙∙Dy Coupling in Three Isomers of Dy-Oxide Clusterfullerene Dy2O@C82
    (Chichester : John Wiley and Sons Ltd, 2019) Yang, W.; Velkos, G.; Liu, F.; Sudarkova, S.M.; Wang, Y.; Zhuang, J.; Zhang, H.; Li, X.; Zhang, X.; Büchner, B.; Avdoshenko, S.M.; Popov, A.A.; Chen, N.
    A new class of single-molecule magnets (SMMs) based on Dy-oxide clusterfullerenes is synthesized. Three isomers of Dy2O@C82 with Cs(6), C3v(8), and C2v(9) cage symmetries are characterized by single-crystal X-ray diffraction, which shows that the endohedral Dy−(µ2-O)−Dy cluster has bent shape with very short Dy−O bonds. Dy2O@C82 isomers show SMM behavior with broad magnetic hysteresis, but the temperature and magnetization relaxation depend strongly on the fullerene cage. The short Dy−O distances and the large negative charge of the oxide ion in Dy2O@C82 result in the very strong magnetic anisotropy of Dy ions. Their magnetic moments are aligned along the Dy−O bonds and are antiferromagnetically (AFM) coupled. At low temperatures, relaxation of magnetization in Dy2O@C82 proceeds via the ferromagnetically (FM)-coupled excited state, giving Arrhenius behavior with the effective barriers equal to the AFM-FM energy difference. The AFM-FM energy differences of 5.4–12.9 cm−1 in Dy2O@C82 are considerably larger than in SMMs with {Dy2O2} bridges, and the Dy∙∙∙Dy exchange coupling in Dy2O@C82 is the strongest among all dinuclear Dy SMMs with diamagnetic bridges. Dy-oxide clusterfullerenes provide a playground for the further tuning of molecular magnetism via variation of the size and shape of the fullerene cage.
  • Item
    A diuranium carbide cluster stabilized inside a C80 fullerene cage
    (London : Nature Publishing Group, 2018) Zhang, X.; Li, W.; Feng, L.; Chen, X.; Hansen, A.; Grimme, S.; Fortier, S.; Sergentu, D.-C.; Duignan, T.J.; Autschbach, J.; Wang, S.; Wang, Y.; Velkos, G.; Popov, A.A.; Aghdassi, N.; Duhm, S.; Li, X.; Li, J.; Echegoyen, L.; Schwarz, W.H.E.; Chen, N.
    Unsupported non-bridged uranium-carbon double bonds have long been sought after in actinide chemistry as fundamental synthetic targets in the study of actinide-ligand multiple bonding. Here we report that, utilizing I h(7)-C80 fullerenes as nanocontainers, a diuranium carbide cluster, U=C=U, has been encapsulated and stabilized in the form of UCU@I h(7)-C80. This endohedral fullerene was prepared utilizing the Krätschmer-Huffman arc discharge method, and was then co-crystallized with nickel(II) octaethylporphyrin (NiII-OEP) to produce UCU@I h(7)-C80·[NiII-OEP] as single crystals. X-ray diffraction analysis reveals a cage-stabilized, carbide-bridged, bent UCU cluster with unexpectedly short uranium-carbon distances (2.03 Å) indicative of covalent U=C double-bond character. The quantum-chemical results suggest that both U atoms in the UCU unit have formal oxidation state of +5. The structural features of UCU@I h(7)-C80 and the covalent nature of the U(f1)=C double bonds were further affirmed through various spectroscopic and theoretical analyses.
  • Item
    Pressure-driven collapse of the relativistic electronic ground state in a honeycomb
    (London : Nature Publishing Group, 2018) Clancy, J.P.; Gretarsson, H.; Sears, J.A.; Singh, Y.; Desgreniers, S.; Mehlawat, K.; Layek, S.; Rozenberg, G.K.; Ding, Y.; Upton, M.H.; Casa, D.; Chen, N.; Im, J.; Lee, Y.; Yadav, R.; Hozoi, L.; Efremov, D.; Van Den Brink, J.; Kim, Y.-J.
    Honeycomb-lattice quantum magnets with strong spin-orbit coupling are promising candidates for realizing a Kitaev quantum spin liquid. Although iridate materials such as Li2IrO3 and Na2IrO3 have been extensively investigated in this context, there is still considerable debate as to whether a localized relativistic wavefunction (J eff = 1/2) provides a suitable description for the electronic ground state of these materials. To address this question, we have studied the evolution of the structural and electronic properties of α-Li2IrO3 as a function of applied hydrostatic pressure using a combination of X-ray diffraction and X-ray spectroscopy techniques. We observe striking changes even under the application of only small hydrostatic pressure (P ≤ 0.1 GPa): A distortion of the Ir honeycomb lattice (via X-ray diffraction), a dramatic decrease in the strength of spin-orbit coupling effects (via X-ray absorption spectroscopy), and a significant increase in non-cubic crystal electric field splitting (via resonant inelastic X-ray scattering). Our data indicate that α-Li2IrO3 is best described by a J eff = 1/2 state at ambient pressure, but demonstrate that this state is extremely fragile and collapses under the influence of applied pressure.