Search Results

Now showing 1 - 2 of 2
  • Item
    Synaptic Plasticity in Memristive Artificial Synapses and Their Robustness Against Noisy Inputs
    (Lausanne : Frontiers Research Foundation, 2021) Du, Nan; Zhao, Xianyue; Chen, Ziang; Choubey, Bhaskar; Di Ventra, Massimiliano; Skorupa, Ilona; Bürger, Danilo; Schmidt, Heidemarie
    Emerging brain-inspired neuromorphic computing paradigms require devices that can emulate the complete functionality of biological synapses upon different neuronal activities in order to process big data flows in an efficient and cognitive manner while being robust against any noisy input. The memristive device has been proposed as a promising candidate for emulating artificial synapses due to their complex multilevel and dynamical plastic behaviors. In this work, we exploit ultrastable analog BiFeO3 (BFO)-based memristive devices for experimentally demonstrating that BFO artificial synapses support various long-term plastic functions, i.e., spike timing-dependent plasticity (STDP), cycle number-dependent plasticity (CNDP), and spiking rate-dependent plasticity (SRDP). The study on the impact of electrical stimuli in terms of pulse width and amplitude on STDP behaviors shows that their learning windows possess a wide range of timescale configurability, which can be a function of applied waveform. Moreover, beyond SRDP, the systematical and comparative study on generalized frequency-dependent plasticity (FDP) is carried out, which reveals for the first time that the ratio modulation between pulse width and pulse interval time within one spike cycle can result in both synaptic potentiation and depression effect within the same firing frequency. The impact of intrinsic neuronal noise on the STDP function of a single BFO artificial synapse can be neglected because thermal noise is two orders of magnitude smaller than the writing voltage and because the cycle-to-cycle variation of the current–voltage characteristics of a single BFO artificial synapses is small. However, extrinsic voltage fluctuations, e.g., in neural networks, cause a noisy input into the artificial synapses of the neural network. Here, the impact of extrinsic neuronal noise on the STDP function of a single BFO artificial synapse is analyzed in order to understand the robustness of plastic behavior in memristive artificial synapses against extrinsic noisy input.
  • Item
    Physics inspired compact modelling of BiFeO3 based memristors
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Yarragolla, Sahitya; Du, Nan; Hemke, Torben; Zhao, Xianyue; Chen, Ziang; Polian, Ilia; Mussenbrock, Thomas
    With the advent of the Internet of Things, nanoelectronic devices or memristors have been the subject of significant interest for use as new hardware security primitives. Among the several available memristors, BiFeO3 (BFO)-based electroforming-free memristors have attracted considerable attention due to their excellent properties, such as long retention time, self-rectification, intrinsic stochasticity, and fast switching. They have been actively investigated for use in physical unclonable function (PUF) key storage modules, artificial synapses in neural networks, nonvolatile resistive switches, and reconfigurable logic applications. In this work, we present a physics-inspired 1D compact model of a BFO memristor to understand its implementation for such applications (mainly PUFs) and perform circuit simulations. The resistive switching based on electric field-driven vacancy migration and intrinsic stochastic behaviour of the BFO memristor are modelled using the cloud-in-a-cell scheme. The experimental current–voltage characteristics of the BFO memristor are successfully reproduced. The response of the BFO memristor to changes in electrical properties, environmental properties (such as temperature) and stress are analyzed and consistant with experimental results.