Search Results

Now showing 1 - 3 of 3
  • Item
    Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: Implications for regional direct radiative forcing under clean and polluted conditions
    (München : European Geopyhsical Union, 2011) Stock, M.; Cheng, Y.F.; Birmili, W.; Massling, A.; Wehner, B.; Müller, T.; Leinert, S.; Kalivitis, N.; Mihalopoulos, N.; Wiedensohler, A.
    This work examines the effect of direct radiative forcing of aerosols in the eastern Mediterranean troposphere as a function of air mass composition, particle size distribution and hygroscopicity, and relative humidity (RH). During intensive field measurements on the island of Crete, Greece, the hygroscopic properties of atmospheric particles were determined using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) and a Hygroscopicity Differential Mobility Analyzer-Aerodynamic Particle Sizer (H-DMA-APS). Similar to former studies, the H-TDMA identified three hygroscopic sub-fractions of particles in the sub-μm range: a more hygroscopic group, a less hygroscopic group and a nearly hydrophobic particle group. The average hygroscopic particle growth factors at 90 % RH were a significant function of particle mobility diameter (Dp): 1.42 (± 0.05) at 30 nm compared to 1.63 (± 0.07) at 250 nm. The H-DMA-APS identified up to three hygroscopic sub-fractions at mobility diameters of 1.0 and 1.2 μm. The data recorded between 12 August and 20 October 2005 were classified into four distinct synoptic-scale air mass types distinguishing between different regions of origin (western Mediterranean vs. the Aegean Sea) as well as the degree of continental pollution (marine vs. continentally influenced). The hygroscopic properties of particles with diameter Dp≥150 nm showed the most pronounced dependency on air mass origin, with growth factors in marine air masses exceeding those in continentally influenced air masses. Particle size distributions and hygroscopic growth factors were used to calculate aerosol light scattering coefficients at ambient RH using a Mie model. A main result was the pronounced enhancement of particle scattering over the eastern Mediterranean due to hygroscopic growth, both in the marine and continentally influenced air masses. When RH reached its summer daytime values around 70–80 %, up to 50–70 % of the calculated visibility reduction was due to the hygroscopic growth of the particles by water compared to the effect of the dry particles alone. The estimated aerosol direct radiative forcings for both, marine and continentally influenced air masses were negative indicating a net cooling of the atmosphere due to the aerosol. The radiative forcing ΔFr was nevertheless governed by the total aerosol concentration most of the time: ΔFr was typically more negative for continentally influenced aerosols (ca. −4 W m−2) compared to rather clean marine aerosols (ca. −1.5 W m−2). When RH occasionally reached 90 % in marine air masses, ΔFr even reached values down to −7 W m−2. Our results emphasize, on the basis of explicit particle hygroscopicity measurements, the relevance of ambient RH for the radiative forcing of regional atmospheres.
  • Item
    Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 2: Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles
    (München : European Geopyhsical Union, 2011) Rose, D.; Gunthe, S.S.; Su, H.; Garland, R.M.; Yang, H.; Berghof, M.; Cheng, Y.F.; Wehner, B.; Achtert, P.; Nowak, A.; Wiedensohler, A.; Takegawa, N.; Kondo, Y.; Hu, M.; Zhang, Y.; Andreae, M.O.; Pöschl, U.
    Size-resolved chemical composition, mixing state, and cloud condensation nucleus (CCN) activity of aerosol particles in polluted mega-city air and biomass burning smoke were measured during the PRIDE-PRD2006 campaign near Guangzhou, China, using an aerosol mass spectrometer (AMS), a volatility tandem differential mobility analyzer (VTDMA), and a continuous-flow CCN counter (DMT-CCNC). The size-dependence and temporal variations of the effective average hygroscopicity parameter for CCN-active particles (κa) could be parameterized as a function of organic and inorganic mass fractions (forg, finorg) determined by the AMS: κa,p=κorg·forg + κinorg·finorg. The characteristic κ values of organic and inorganic components were similar to those observed in other continental regions of the world: κorg≈0.1 and κinorg≈0.6. The campaign average κa values increased with particle size from ~0.25 at ~50 nm to ~0.4 at ~200 nm, while forg decreased with particle size. At ~50 nm, forg was on average 60% and increased to almost 100% during a biomass burning event. The VTDMA results and complementary aerosol optical data suggest that the large fractions of CCN-inactive particles observed at low supersaturations (up to 60% at S≤0.27%) were externally mixed weakly CCN-active soot particles with low volatility (diameter reduction <5% at 300 °C) and effective hygroscopicity parameters around κLV≈0.01. A proxy for the effective average hygroscopicity of the total ensemble of CCN-active particles including weakly CCN-active particles (κt) could be parameterized as a function of κa,p and the number fraction of low volatility particles determined by VTDMA (φLV): κt,p=κa,p−φLV·(κa,p−κLV). Based on κ values derived from AMS and VTDMA data, the observed CCN number concentrations (NCCN,S≈102–104 cm−3 at S = 0.068–0.47%) could be efficiently predicted from the measured particle number size distribution. The mean relative deviations between observed and predicted CCN concentrations were ~10% when using κt,p, and they increased to ~20% when using only κa,p. The mean relative deviations were not higher (~20%) when using an approximate continental average value of κ≈0.3, although the constant κ value cannot account for the observed temporal variations in particle composition and mixing state (diurnal cycles and biomass burning events). Overall, the results confirm that on a global and climate modeling scale an average value of κ≈0.3 can be used for approximate predictions of CCN number concentrations in continental boundary layer air when aerosol size distribution data are available without information about chemical composition. Bulk or size-resolved data on aerosol chemical composition enable improved CCN predictions resolving regional and temporal variations, but the composition data need to be highly accurate and complemented by information about particle mixing state to achieve high precision (relative deviations <20%).
  • Item
    Assessment of cloud supersaturation by size-resolved aerosol particle and cloud condensation nuclei (CCN) measurements
    (München : European Geopyhsical Union, 2014) Krüger, M.L.; Mertes, S.; Klimach, T.; Cheng, Y.F.; Su, H.; Schneider, J.; Andreae, M.O.; Pöschl, U.; Rose, D.
    In this study we show how size-resolved measurements of aerosol particles and cloud condensation nuclei (CCN) can be used to characterize the supersaturation of water vapor in a cloud. The method was developed and applied during the ACRIDICON-Zugspitze campaign (17 September to 4 October 2012) at the high-Alpine research station Schneefernerhaus (German Alps, 2650 m a.s.l.). Number size distributions of total and interstitial aerosol particles were measured with a scanning mobility particle sizer (SMPS), and size-resolved CCN efficiency spectra were recorded with a CCN counter system operated at different supersaturation levels. During the evolution of a cloud, aerosol particles are exposed to different supersaturation levels. We outline and compare different estimates for the lower and upper bounds (Slow, Shigh) and the average value (Savg) of peak supersaturation encountered by the particles in the cloud. A major advantage of the derivation of Slow and Savg from size-resolved CCN efficiency spectra is that it does not require the specific knowledge or assumptions about aerosol hygroscopicity that are needed to derive estimates of Slow, Shigh, and Savg from aerosol size distribution data. For the investigated cloud event, we derived Slow ≈ 0.07–0.25%, Shigh ≈ 0.86–1.31% and Savg ≈ 0.42–0.68%.