Search Results

Now showing 1 - 2 of 2
  • Item
    Optimizing the Geometry of Photoacoustically Active Gold Nanoparticles for Biomedical Imaging
    (Washington, DC : ACS, 2020) García-Álvarez, Rafaela; Chen, Lisa; Nedilko, Alexander; Sánchez-Iglesias, Ana; Rix, Anne; Lederle, Wiltrud; Pathak, Vertika; Lammers, Twan; von Plessen, Gero; Kostarelos, Kostas; Liz-Marzán, Luis M.; Kuehne, Alexander J.C.; Chigrin, Dmitry N.
    Photoacoustics is an upcoming modality for biomedical imaging, which promises minimal invasiveness at high penetration depths of several centimeters. For superior photoacoustic contrast, imaging probes with high photothermal conversion efficiency are required. Gold nanoparticles are among the best performing photoacoustic imaging probes. However, the geometry and size of the nanoparticles determine their photothermal efficiency. We present a systematic theoretical analysis to determine the optimum nanoparticle geometry with respect to photoacoustic efficiency in the near-infrared spectral range, for superior photoacoustic contrast. Theoretical predictions are illustrated by experimental results for two of the most promising nanoparticle geometries, namely, high aspect ratio gold nanorods and gold nanostars. Copyright © 2020 American Chemical Society.
  • Item
    The Potential of Combining Thermal Scanning Probes and Phase-Change Materials for Tunable Metasurfaces
    (Weinheim : Wiley-VCH, 2020) Michel, Ann-Katrin U.; Meyer, Sebastian; Essing, Nicolas; Lassaline, Nolan; Lightner, Carin R.; Bisig, Samuel; Norris, David J.; Chigrin, Dmitry N.
    Metasurfaces allow for the spatiotemporal variation of amplitude, phase, and polarization of optical wavefronts. Implementation of active tunability of metasurfaces promises compact flat optics capable of reconfigurable wavefront shaping. Phase-change materials (PCMs) are a prominent material class enabling reconfigurable metasurfaces due to their large refractive index change upon structural transition. However, commonly employed laser-induced switching of PCMs limits the achievable feature sizes and restricts device miniaturization. Thermal scanning-probe-induced local switching of the PCM germanium telluride is proposed to realize near-infrared metasurfaces with feature sizes far below what is achievable with diffraction-limited optical switching. The design is based on a planar multilayer and does not require fabrication of protruding resonators as commonly applied in the literature. Instead, it is numerically demonstrated that a broad-band tuning of perfect absorption can be realized by the localized tip-induced crystallization of the PCM. The spectral response of the metasurface is explained using resonance mode analysis and numerical simulations. To facilitate experimental realization, a theoretical description of the tip-induced crystallization employing multiphysics simulations is provided to demonstrate the great potential for fabricating compact reconfigurable metasurfaces. The concept can be applied not only for plasmonic sensing and spatial frequency filtering, but also be transferred to all-dielectric metasurfaces. © 2020 Wiley-VCH GmbH