Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

State-of-the-art global models underestimate impacts from climate extremes

2019, Schewe, Jacob, Gosling, Simon N., Reyer, Christopher, Zhao, Fang, Ciais, Philippe, Elliott, Joshua, Francois, Louis, Huber, Veronika, Lotze, Heike K., Seneviratne, Sonia I., van Vliet, Michelle T. H., Vautard, Robert, Wada, Yoshihide, Breuer, Lutz, Büchner, Matthias, Carozza, David A., Chang, Jinfeng, Coll, Marta, Deryng, Delphine, de Wit, Allard, Eddy, Tyler D., Folberth, Christian, Frieler, Katja, Friend, Andrew D., Gerten, Dieter, Gudmundsson, Lukas, Hanasaki, Naota, Ito, Akihiko, Khabarov, Nikolay, Kim, Hyungjun, Lawrence, Peter, Morfopoulos, Catherine, Müller, Christoph, Müller Schmied, Hannes, Orth, René, Ostberg, Sebastian, Pokhrel, Yadu, Pugh, Thomas A. M., Sakurai, Gen, Satoh, Yusuke, Schmid, Erwin, Stacke, Tobias, Steenbeek, Jeroen, Steinkamp, Jörg, Tang, Qiuhong, Tian, Hanqin, Tittensor, Derek P., Volkholz, Jan, Wang, Xuhui, Warszawski, Lila

Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.

Loading...
Thumbnail Image
Item

Regional contribution to variability and trends of global gross primary productivity

2017, Chen, Min, Rafique, Rashid, Asrar, Ghassem R., Bond-Lamberty, Ben, Ciais, Philippe, Zhao, Fang, Reyer, Christopher P.O., Ostberg, Sebastian, Chang, Jinfeng, Ito, Akihiko, Yang, Jia, Zeng, Ning, Kalnay, Eugenia, West, Tristram, Leng, Guoyong, Francois, Louis, Munhoven, Guy, Henrot, Alexandra, Tian, Hanqin, Pan, Shufen, Nishina, Kazuya, Viovy, Nicolas, Morfopoulos, Catherine, Betts, Richard, Schaphoff, Sibyll, Steinkamp, Jörg

Terrestrial gross primary productivity (GPP) is the largest component of the global carbon cycle and a key process for understanding land ecosystems dynamics. In this study, we used GPP estimates from a combination of eight global biome models participating in the Inter-Sectoral Impact-Model Intercomparison Project phase 2a (ISIMIP2a), the Moderate Resolution Spectroradiometer (MODIS) GPP product, and a data-driven product (Model Tree Ensemble, MTE) to study the spatiotemporal variability of GPP at the regional and global levels. We found the 2000–2010 total global GPP estimated from the model ensemble to be 117 ± 13 Pg C yr−1 (mean ± 1 standard deviation), which was higher than MODIS (112 Pg C yr−1), and close to the MTE (120 Pg C yr−1). The spatial patterns of MODIS, MTE and ISIMIP2a GPP generally agree well, but their temporal trends are different, and the seasonality and inter-annual variability of GPP at the regional and global levels are not completely consistent. For the model ensemble, Tropical Latin America contributes the most to global GPP, Asian regions contribute the most to the global GPP trend, the Northern Hemisphere regions dominate the global GPP seasonal variations, and Oceania is likely the largest contributor to inter-annual variability of global GPP. However, we observed large uncertainties across the eight ISIMIP2a models, which are probably due to the differences in the formulation of underlying photosynthetic processes. The results of this study are useful in understanding the contributions of different regions to global GPP and its spatiotemporal variability, how the model- and observational-based GPP estimates differ from each other in time and space, and the relative strength of the eight models. Our results also highlight the models' ability to capture the seasonality of GPP that are essential for understanding the inter-annual and seasonal variability of GPP as a major component of the carbon cycle.

Loading...
Thumbnail Image
Item

Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: Benchmarking for impact assessment studies

2017, Ito, Akihiko, Nishina, Kazuya, Reyer, Christopher P.O., François, Louis, Henrot, Alexandra-Jane, Munhoven, Guy, Jacquemin, Ingrid, Tian, Hanqin, Yang, Jia, Pan, Shufen, Morfopoulos, Catherine, Betts, Richard, Hickler, Thomas, Steinkamp, Jörg, Ostberg, Sebastian, Schaphoff, Sibyll, Ciais, Philippe, Chang, Jinfeng, Rafique, Rashid, Zeng, Ning, Zhao, Fang

Simulating vegetation photosynthetic productivity (or gross primary production, GPP) is a critical feature of the biome models used for impact assessments of climate change. We conducted a benchmarking of global GPP simulated by eight biome models participating in the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a) with four meteorological forcing datasets (30 simulations), using independent GPP estimates and recent satellite data of solar-induced chlorophyll fluorescence as a proxy of GPP. The simulated global terrestrial GPP ranged from 98 to 141 Pg C yr−1 (1981–2000 mean); considerable inter-model and inter-data differences were found. Major features of spatial distribution and seasonal change of GPP were captured by each model, showing good agreement with the benchmarking data. All simulations showed incremental trends of annual GPP, seasonal-cycle amplitude, radiation-use efficiency, and water-use efficiency, mainly caused by the CO2 fertilization effect. The incremental slopes were higher than those obtained by remote sensing studies, but comparable with those by recent atmospheric observation. Apparent differences were found in the relationship between GPP and incoming solar radiation, for which forcing data differed considerably. The simulated GPP trends co-varied with a vegetation structural parameter, leaf area index, at model-dependent strengths, implying the importance of constraining canopy properties. In terms of extreme events, GPP anomalies associated with a historical El Niño event and large volcanic eruption were not consistently simulated in the model experiments due to deficiencies in both forcing data and parameterized environmental responsiveness. Although the benchmarking demonstrated the overall advancement of contemporary biome models, further refinements are required, for example, for solar radiation data and vegetation canopy schemes.

Loading...
Thumbnail Image
Item

Assessing the impacts of 1.5 °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b)

2017, Frieler, Katja, Lange, Stefan, Piontek, Franziska, Reyer, Christopher P.O., Schewe, Jacob, Warszawski, Lila, Zhao, Fang, Chini, Louise, Denvil, Sebastien, Emanuel, Kerry, Geiger, Tobias, Halladay, Kate, Hurtt, George, Mengel, Matthias, Murakami, Daisuke, Ostberg, Sebastian, Popp, Alexander, Riva, Riccardo, Stevanovic, Miodrag, Suzuki, Tatsuo, Volkholz, Jan, Burke, Eleanor, Ciais, Philippe, Ebi, Kristie, Eddy, Tyler D., Elliott, Joshua, Galbraith, Eric, Gosling, Simon N., Hattermann, Fred, Hickler, Thomas, Hinkel, Jochen, Hof, Christian, Huber, Veronika, Jägermeyr, Jonas, Krysanova, Valentina, Marcé, Rafael, Müller Schmied, Hannes, Mouratiadou, Ioanna, Pierson, Don, Tittensor, Derek P., Vautard, Robert, van Vliet, Michelle, Biber, Matthias F., Betts, Richard A., Bodirsky, Benjamin Leon, Deryng, Delphine, Frolking, Steve, Jones, Chris D., Lotze, Heike K., Lotze-Campen, Hermann, Sahajpal, Ritvik, Thonicke, Kirsten, Tian, Hanqin, Yamagata, Yoshiki

In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the Intergovernmental Panel on Climate Change (IPCC) to provide a "special report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016, the IPCC panel accepted the invitation. Here we describe the response devised within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to provide tailored, cross-sectorally consistent impact projections to broaden the scientific basis for the report. The simulation protocol is designed to allow for (1) separation of the impacts of historical warming starting from pre-industrial conditions from impacts of other drivers such as historical land-use changes (based on pre-industrial and historical impact model simulations); (2) quantification of the impacts of additional warming up to 1.5°C, including a potential overshoot and long-term impacts up to 2299, and comparison to higher levels of global mean temperature change (based on the low-emissions Representative Concentration Pathway RCP2.6 and a no-mitigation pathway RCP6.0) with socio-economic conditions fixed at 2005 levels; and (3) assessment of the climate effects based on the same climate scenarios while accounting for simultaneous changes in socio-economic conditions following the middle-of-the-road Shared Socioeconomic Pathway (SSP2, Fricko et al., 2016) and in particular differential bioenergy requirements associated with the transformation of the energy system to comply with RCP2.6 compared to RCP6.0. With the aim of providing the scientific basis for an aggregation of impacts across sectors and analysis of cross-sectoral interactions that may dampen or amplify sectoral impacts, the protocol is designed to facilitate consistent impact projections from a range of impact models across different sectors (global and regional hydrology, lakes, global crops, global vegetation, regional forests, global and regional marine ecosystems and fisheries, global and regional coastal infrastructure, energy supply and demand, temperature-related mortality, and global terrestrial biodiversity).

Loading...
Thumbnail Image
Item

Benchmarking carbon fluxes of the ISIMIP2a biome models

2017, Chang, Jinfeng, Ciais, Philippe, Wang, Xuhui, Piao, Shilong, Asrar, Ghassem, Betts, Richard, Chevallier, Frédéric, Dury, Marie, François, Louis, Frieler, Katja, Ros, Anselmo García Cantú, Henrot, Alexandra-Jane, Hickler, Thomas, Ito, Akihiko, Morfopoulos, Catherine, Munhoven, Guy, Nishina, Kazuya, Ostberg, Sebastian, Pan, Shufen, Peng, Shushi, Rafique, Rashid, Reyer, Christopher, Rödenbeck, Christian, Schaphoff, Sibyll, Steinkamp, Jörg, Tian, Hanqin, Viovy, Nicolas, Yang, Jia, Zeng, Ning, Zhao, Fang

The purpose of this study is to evaluate the eight ISIMIP2a biome models against independent estimates of long-term net carbon fluxes (i.e. Net Biome Productivity, NBP) over terrestrial ecosystems for the recent four decades (1971–2010). We evaluate modeled global NBP against 1) the updated global residual land sink (RLS) plus land use emissions (E LUC) from the Global Carbon Project (GCP), presented as R + L in this study by Le Quéré et al (2015), and 2) the land CO2 fluxes from two atmospheric inversion systems: Jena CarboScope s81_v3.8 and CAMS v15r2, referred to as F Jena and F CAMS respectively. The model ensemble-mean NBP (that includes seven models with land-use change) is higher than but within the uncertainty of R + L, while the simulated positive NBP trend over the last 30 yr is lower than that from R + L and from the two inversion systems. ISIMIP2a biome models well capture the interannual variation of global net terrestrial ecosystem carbon fluxes. Tropical NBP represents 31 ± 17% of global total NBP during the past decades, and the year-to-year variation of tropical NBP contributes most of the interannual variation of global NBP. According to the models, increasing Net Primary Productivity (NPP) was the main cause for the generally increasing NBP. Significant global NBP anomalies from the long-term mean between the two phases of El Niño Southern Oscillation (ENSO) events are simulated by all models (p < 0.05), which is consistent with the R + L estimate (p = 0.06), also mainly attributed to NPP anomalies, rather than to changes in heterotrophic respiration (Rh). The global NPP and NBP anomalies during ENSO events are dominated by their anomalies in tropical regions impacted by tropical climate variability. Multiple regressions between R + L, F Jena and F CAMS interannual variations and tropical climate variations reveal a significant negative response of global net terrestrial ecosystem carbon fluxes to tropical mean annual temperature variation, and a non-significant response to tropical annual precipitation variation. According to the models, tropical precipitation is a more important driver, suggesting that some models do not capture the roles of precipitation and temperature changes adequately.

Loading...
Thumbnail Image
Item

The critical role of the routing scheme in simulating peak river discharge in global hydrological models

2017, Zhao, Fang, Veldkamp, Ted I.E., Frieler, Katja, Schewe, Jacob, Ostberg, Sebastian, Willner, Sven, Schauberger, Bernhard, Gosling, Simon N., Müller Schmied, Hannes, Portmann, Felix T., Leng, Guoyong, Huang, Maoyi, Liu, Xingcai, Tang, Qiuhong, Hanasaki, Naota, Biemans, Hester, Gerten, Dieter, Satoh, Yusuke, Pokhrel, Yadu, Stacke, Tobias, Ciais, Philippe, Chang, Jinfeng, Ducharne, Agnes, Guimberteau, Matthieu, Wada, Yoshihide, Kim, Hyungjun, Yamazaki, Dai

Global hydrological models (GHMs) have been applied to assess global flood hazards, but their capacity to capture the timing and amplitude of peak river discharge—which is crucial in flood simulations—has traditionally not been the focus of examination. Here we evaluate to what degree the choice of river routing scheme affects simulations of peak discharge and may help to provide better agreement with observations. To this end we use runoff and discharge simulations of nine GHMs forced by observational climate data (1971–2010) within the ISIMIP2a project. The runoff simulations were used as input for the global river routing model CaMa-Flood. The simulated daily discharge was compared to the discharge generated by each GHM using its native river routing scheme. For each GHM both versions of simulated discharge were compared to monthly and daily discharge observations from 1701 GRDC stations as a benchmark. CaMa-Flood routing shows a general reduction of peak river discharge and a delay of about two to three weeks in its occurrence, likely induced by the buffering capacity of floodplain reservoirs. For a majority of river basins, discharge produced by CaMa-Flood resulted in a better agreement with observations. In particular, maximum daily discharge was adjusted, with a multi-model averaged reduction in bias over about 2/3 of the analysed basin area. The increase in agreement was obtained in both managed and near-natural basins. Overall, this study demonstrates the importance of routing scheme choice in peak discharge simulation, where CaMa-Flood routing accounts for floodplain storage and backwater effects that are not represented in most GHMs. Our study provides important hints that an explicit parameterisation of these processes may be essential in future impact studies.