Search Results

Now showing 1 - 3 of 3
  • Item
    Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales
    (Hoboken, NJ : Wiley-Blackwell, 2020) Lange, Stefan; Volkholz, Jan; Geiger, Tobias; Zhao, Fang; Vega, Iliusi; Veldkamp, Ted; Reyer, Christopher P.O.; Warszawski, Lila; Huber, Veronika; Jägermeyr, Jonas; Schewe, Jacob; Bresch, David N.; Büchner, Matthias; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; Emanuel, Kerry; Folberth, Christian; Gerten, Dieter; Gosling, Simon N.; Grillakis, Manolis; Hanasaki, Naota; Henrot, Alexandra-Jane; Hickler, Thomas; Honda, Yasushi; Ito, Akihiko; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Müller, Christoph; Nishina, Kazuya; Ostberg, Sebastian; Müller Schmied, Hannes; Seneviratne, Sonia I.; Stacke, Tobias; Steinkamp, Jörg; Thiery, Wim; Wada, Yoshihide; Willner, Sven; Yang, Hong; Yoshikawa, Minoru; Yue, Chao; Frieler, Katja
    The extent and impact of climate-related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter-Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events considered: river floods, tropical cyclones, crop failure, wildfires, droughts, and heatwaves. Global warming of 2°C relative to preindustrial conditions is projected to lead to a more than fivefold increase in cross-category aggregate exposure globally. Changes in exposure are unevenly distributed, with tropical and subtropical regions facing larger increases than higher latitudes. The largest increases in overall exposure are projected for the population of South Asia. ©2020. The Authors.
  • Item
    Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale
    (Katlenburg-Lindau : Copernics Publications, 2020) Li, Wei; Ciais, Philippe; Stehfest, Elke; van Vuuren, Detlef; Popp, Alexander; Arneth, Almut; Di Fulvio, Fulvio; Doelma, Jonathan; Humpenöder, Florian; Harper, Anna B.; Park, Taejin; Makowski, David; Havlik, Petr; Obersteiner, Michael; Wang, Jingmeng; Krause, Andreas; Liu, Wenfeng
    Most scenarios from integrated assessment models (IAMs) that project greenhouse gas emissions include the use of bioenergy as a means to reduce CO2 emissions or even to achieve negative emissions (together with CCS carbon capture and storage). The potential amount of CO2 that can be removed from the atmosphere depends, among others, on the yields of bioenergy crops, the land available to grow these crops and the efficiency with which CO2 produced by combustion is captured. While bioenergy crop yields can be simulated by models, estimates of the spatial distribution of bioenergy yields under current technology based on a large number of observations are currently lacking. In this study, a random-forest (RF) algorithm is used to upscale a bioenergy yield dataset of 3963 observations covering Miscanthus, switchgrass, eucalypt, poplar and willow using climatic and soil conditions as explanatory variables. The results are global yield maps of five important lignocellulosic bioenergy crops under current technology, climate and atmospheric CO2 conditions at a 0:5 0:5 spatial resolution. We also provide a combined "best bioenergy crop" yield map by selecting one of the five crop types with the highest yield in each of the grid cells, eucalypt and Miscanthus in most cases. The global median yield of the best crop is 16.3 tDMha1 yr1 (DM dry matter). High yields mainly occur in the Amazon region and southeastern Asia. We further compare our empirically derived maps with yield maps used in three IAMs and find that the median yields in our maps are 50% higher than those in the IAM maps. Our estimates of gridded bioenergy crop yields can be used to provide bioenergy yields for IAMs, to evaluate land surface models or to identify the most suitable lands for future bioenergy crop plantations. The 0:5 0:5 global maps for yields of different bioenergy crops and the best crop and for the best crop composition generated from this study can be download from https://doi.org/10.5281/zenodo.3274254 (Li, 2019). © 2019 Cambridge University Press. All rights reserved.
  • Item
    Historical and future changes in global flood magnitude - evidence from a model-observation investigation
    (Munich : EGU, 2020) Do, Hong Xuan; Zhao, Fang; Westra, Seth; Leonard, Michael; Gudmundsson, Lukas; Boulange, Julien Eric Stanislas; Chang, Jinfeng; Ciais, Philippe; Gerten, Dieter; Gosling, Simon N.; Müller Schmied, Hannes; Stacke, Tobias; Telteu, Camelia-Eliza; Wada, Yoshihide
    To improve the understanding of trends in extreme flows related to flood events at the global scale, historical and future changes of annual maxima of 7 d streamflow are investigated, using a comprehensive streamflow archive and six global hydrological models. The models' capacity to characterise trends in annual maxima of 7 d streamflow at the continental and global scale is evaluated across 3666 river gauge locations over the period from 1971 to 2005, focusing on four aspects of trends: (i) mean, (ii) standard deviation, (iii) percentage of locations showing significant trends and (iv) spatial pattern. Compared to observed trends, simulated trends driven by observed climate forcing generally have a higher mean, lower spread and a similar percentage of locations showing significant trends. Models show a low to moderate capacity to simulate spatial patterns of historical trends, with approximately only from 12 % to 25 % of the spatial variance of observed trends across all gauge stations accounted for by the simulations. Interestingly, there are statistically significant differences between trends simulated by global hydrological models (GHMs) forced with observational climate and by those forced by bias-corrected climate model output during the historical period, suggesting the important role of the stochastic natural (decadal, inter-annual) climate variability. Significant differences were found in simulated flood trends when averaged only at gauged locations compared to those averaged across all simulated grid cells, highlighting the potential for bias toward well-observed regions in our understanding of changes in floods. Future climate projections (simulated under the RCP2.6 and RCP6.0 greenhouse gas concentration scenarios) suggest a potentially high level of change in individual regions, with up to 35 % of cells showing a statistically significant trend (increase or decrease; at 10 % significance level) and greater changes indicated for the higher concentration pathway. Importantly, the observed streamflow database under-samples the percentage of locations consistently projected with increased flood hazards under the RCP6.0 greenhouse gas concentration scenario by more than an order of magnitude (0.9 % compared to 11.7 %). This finding indicates a highly uncertain future for both flood-prone communities and decision makers in the context of climate change. © Author(s) 2020.