Search Results

Now showing 1 - 10 of 10
  • Item
    The GGCMI Phase 2 experiment: Global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0)
    (Katlenburg-Lindau : Copernicus, 2020) Franke, James A.; Müller, Christoph; Elliott, Joshua; Ruane, Alex C.; Jägermeyr, Jonas; Balkovic, Juraj; Ciais, Philippe; Dury, Marie; Falloon, Pete D.; Folberth, Christian; François, Louis; Hank, Tobias; Hoffmann, Munir; Izaurralde, R. Cesar; Jacquemin, Ingrid; Jones, Curtis; Khabarov, Nikolay; Koch, Marian; Li, Michelle; Liu, Wenfeng; Olin, Stefan; Phillips, Meridel; Pugh, Thomas A. M.; Reddy, Ashwan; Wang, Xuhui; Williams, Karina; Zabel, Florian; Moyer, Elisabeth J.
    Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Process-based crop models, which represent plant physiological and soil processes, are necessary tools for this purpose since they allow representing future climate and management conditions not sampled in the historical record and new locations to which cultivation may shift. However, process-based crop models differ in many critical details, and their responses to different interacting factors remain only poorly understood. The Global Gridded Crop Model Intercomparison (GGCMI) Phase 2 experiment, an activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to provide a systematic parameter sweep focused on climate change factors and their interaction with overall soil fertility, to allow both evaluating model behavior and emulating model responses in impact assessment tools. In this paper we describe the GGCMI Phase 2 experimental protocol and its simulation data archive. A total of 12 crop models simulate five crops with systematic uniform perturbations of historical climate, varying CO2, temperature, water supply, and applied nitrogen (“CTWN”) for rainfed and irrigated agriculture, and a second set of simulations represents a type of adaptation by allowing the adjustment of growing season length. We present some crop yield results to illustrate general characteristics of the simulations and potential uses of the GGCMI Phase 2 archive. For example, in cases without adaptation, modeled yields show robust decreases to warmer temperatures in almost all regions, with a nonlinear dependence that means yields in warmer baseline locations have greater temperature sensitivity. Inter-model uncertainty is qualitatively similar across all the four input dimensions but is largest in high-latitude regions where crops may be grown in the future.
  • Item
    Potential yield simulated by global gridded crop models: using a process-based emulator to explain their differences
    (Katlenburg-Lindau : Copernicus, 2021-3-23) Ringeval, Bruno; Müller, Christoph; Pugh, Thomas A. M.; Mueller, Nathaniel D.; Ciais, Philippe; Folberth, Christian; Liu, Wenfeng; Debaeke, Philippe; Pellerin, Sylvain
    How global gridded crop models (GGCMs) differ in their simulation of potential yield and reasons for those differences have never been assessed. The GGCM Intercomparison (GGCMI) offers a good framework for this assessment. Here, we built an emulator (called SMM for simple mechanistic model) of GGCMs based on generic and simplified formalism. The SMM equations describe crop phenology by a sum of growing degree days, canopy radiation absorption by the Beer–Lambert law, and its conversion into aboveground biomass by a radiation use efficiency (RUE). We fitted the parameters of this emulator against gridded aboveground maize biomass at the end of the growing season simulated by eight different GGCMs in a given year (2000). Our assumption is that the simple set of equations of SMM, after calibration, could reproduce the response of most GGCMs so that differences between GGCMs can be attributed to the parameters related to processes captured by the emulator. Despite huge differences between GGCMs, we show that if we fit both a parameter describing the thermal requirement for leaf emergence by adjusting its value to each grid-point in space, as done by GGCM modellers following the GGCMI protocol, and a GGCM-dependent globally uniform RUE, then the simple set of equations of the SMM emulator is sufficient to reproduce the spatial distribution of the original aboveground biomass simulated by most GGCMs. The grain filling is simulated in SMM by considering a fixed-in-time fraction of net primary productivity allocated to the grains (frac) once a threshold in leaves number (nthresh) is reached. Once calibrated, these two parameters allow for the capture of the relationship between potential yield and final aboveground biomass of each GGCM. It is particularly important as the divergence among GGCMs is larger for yield than for aboveground biomass. Thus, we showed that the divergence between GGCMs can be summarized by the differences in a few parameters. Our simple but mechanistic model could also be an interesting tool to test new developments in order to improve the simulation of potential yield at the global scale.
  • Item
    Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China
    ([London] : Nature Publishing Group UK, 2021) Xing, Xiaofan; Wang, Rong; Bauer, Nico; Ciais, Philippe; Cao, Junji; Chen, Jianmin; Tang, Xu; Wang, Lin; Yang, Xin; Boucher, Olivier; Goll, Daniel; Peñuelas, Josep; Janssens, Ivan A.; Balkanski, Yves; Clark, James; Ma, Jianmin; Pan, Bo; Zhang, Shicheng; Ye, Xingnan; Wang, Yutao; Li, Qing; Luo, Gang; Shen, Guofeng; Li, Wei; Yang, Yechen; Xu, Siqing
    As China ramped-up coal power capacities rapidly while CO2 emissions need to decline, these capacities would turn into stranded assets. To deal with this risk, a promising option is to retrofit these capacities to co-fire with biomass and eventually upgrade to CCS operation (BECCS), but the feasibility is debated with respect to negative impacts on broader sustainability issues. Here we present a data-rich spatially explicit approach to estimate the marginal cost curve for decarbonizing the power sector in China with BECCS. We identify a potential of 222 GW of power capacities in 2836 counties generated by co-firing 0.9 Gt of biomass from the same county, with half being agricultural residues. Our spatially explicit method helps to reduce uncertainty in the economic costs and emissions of BECCS, identify the best opportunities for bioenergy and show the limitations by logistical challenges to achieve carbon neutrality in the power sector with large-scale BECCS in China.
  • Item
    Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic
    ([London] : Nature Publishing Group UK, 2020) Liu, Zhu; Ciais, Philippe; Deng, Zhu; Lei, Ruixue; Davis, Steven J.; Feng, Sha; Zheng, Bo; Cui, Duo; Dou, Xinyu; Zhu, Biqing; Guo, Rui; Ke, Piyu; Sun, Taochun; Lu, Chenxi; He, Pan; Wang, Yuan; Yue, Xu; Wang, Yilong; Lei, Yadong; Zhou, Hao; Cai, Zhaonan; Wu, Yuhui; Guo, Runtao; Han, Tingxuan; Xue, Jinjun; Boucher, Olivier; Boucher, Eulalie; Chevallier, Frédéric; Tanaka, Katsumasa; Wei, Yiming; Zhong, Haiwang; Kang, Chongqing; Zhang, Ning; Chen, Bin; Xi, Fengming; Liu, Miaomiao; Bréon, François-Marie; Lu, Yonglong; Zhang, Qiang; Guan, Dabo; Gong, Peng; Kammen, Daniel M.; He, Kebin; Schellnhuber, Hans Joachim
    The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO2 emissions (−1551 Mt CO2) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic’s effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially.
  • Item
    Global irrigation contribution to wheat and maize yield
    ([London] : Nature Publishing Group UK, 2021) Wang, Xuhui; Müller, Christoph; Elliot, Joshua; Mueller, Nathaniel D.; Ciais, Philippe; Jägermeyr, Jonas; Gerber, James; Dumas, Patrice; Wang, Chenzhi; Yang, Hui; Li, Laurent; Deryng, Delphine; Folberth, Christian; Liu, Wenfeng; Makowski, David; Olin, Stefan; Pugh, Thomas A. M.; Reddy, Ashwan; Schmid, Erwin; Jeong, Sujong; Zhou, Feng; Piao, Shilong
    Irrigation is the largest sector of human water use and an important option for increasing crop production and reducing drought impacts. However, the potential for irrigation to contribute to global crop yields remains uncertain. Here, we quantify this contribution for wheat and maize at global scale by developing a Bayesian framework integrating empirical estimates and gridded global crop models on new maps of the relative difference between attainable rainfed and irrigated yield (ΔY). At global scale, ΔY is 34 ± 9% for wheat and 22 ± 13% for maize, with large spatial differences driven more by patterns of precipitation than that of evaporative demand. Comparing irrigation demands with renewable water supply, we find 30–47% of contemporary rainfed agriculture of wheat and maize cannot achieve yield gap closure utilizing current river discharge, unless more water diversion projects are set in place, putting into question the potential of irrigation to mitigate climate change impacts.
  • Item
    Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land ecosystems
    (Bristol : IOP Publ., 2020) Ito, Akihiko; Reyer, Christopher P. O.; Gädeke, Anne; Ciais, Philippe; Chang, Jinfeng; Chen, Min; François, Louis; Forrest, Matthew; Hickler, Thomas; Ostberg, Sebastian; Shi, Hao; Thiery, Wim; Tian, Hanqin
    Arctic ecosystems are particularly vulnerable to climate change because of Arctic amplification. Here, we assessed the climatic impacts of low-end, 1.5 °C, and 2.0 °C global temperature increases above pre-industrial levels, on the warming of terrestrial ecosystems in northern high latitudes (NHL, above 60 °N including pan-Arctic tundra and boreal forests) under the framework of the Inter-Sectoral Impact Model Intercomparison Project phase 2b protocol. We analyzed the simulated changes of net primary productivity, vegetation biomass, and soil carbon stocks of eight ecosystem models that were forced by the projections of four global climate models and two atmospheric greenhouse gas pathways (RCP2.6 and RCP6.0). Our results showed that considerable impacts on ecosystem carbon budgets, particularly primary productivity and vegetation biomass, are very likely to occur in the NHL areas. The models agreed on increases in primary productivity and biomass accumulation, despite considerable inter-model and inter-scenario differences in the magnitudes of the responses. The inter-model variability highlighted the inadequacies of the present models, which fail to consider important components such as permafrost and wildfire. The simulated impacts were attributable primarily to the rapid temperature increases in the NHL and the greater sensitivity of northern vegetation to warming, which contrasted with the less pronounced responses of soil carbon stocks. The simulated increases of vegetation biomass by 30–60 Pg C in this century have implications for climate policy such as the Paris Agreement. Comparison between the results at two warming levels showed the effectiveness of emission reductions in ameliorating the impacts and revealed unavoidable impacts for which adaptation options are urgently needed in the NHL ecosystems.
  • Item
    Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales
    (Hoboken, NJ : Wiley-Blackwell, 2020) Lange, Stefan; Volkholz, Jan; Geiger, Tobias; Zhao, Fang; Vega, Iliusi; Veldkamp, Ted; Reyer, Christopher P.O.; Warszawski, Lila; Huber, Veronika; Jägermeyr, Jonas; Schewe, Jacob; Bresch, David N.; Büchner, Matthias; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; Emanuel, Kerry; Folberth, Christian; Gerten, Dieter; Gosling, Simon N.; Grillakis, Manolis; Hanasaki, Naota; Henrot, Alexandra-Jane; Hickler, Thomas; Honda, Yasushi; Ito, Akihiko; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Müller, Christoph; Nishina, Kazuya; Ostberg, Sebastian; Müller Schmied, Hannes; Seneviratne, Sonia I.; Stacke, Tobias; Steinkamp, Jörg; Thiery, Wim; Wada, Yoshihide; Willner, Sven; Yang, Hong; Yoshikawa, Minoru; Yue, Chao; Frieler, Katja
    The extent and impact of climate-related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter-Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events considered: river floods, tropical cyclones, crop failure, wildfires, droughts, and heatwaves. Global warming of 2°C relative to preindustrial conditions is projected to lead to a more than fivefold increase in cross-category aggregate exposure globally. Changes in exposure are unevenly distributed, with tropical and subtropical regions facing larger increases than higher latitudes. The largest increases in overall exposure are projected for the population of South Asia. ©2020. The Authors.
  • Item
    Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale
    (Katlenburg-Lindau : Copernics Publications, 2020) Li, Wei; Ciais, Philippe; Stehfest, Elke; van Vuuren, Detlef; Popp, Alexander; Arneth, Almut; Di Fulvio, Fulvio; Doelma, Jonathan; Humpenöder, Florian; Harper, Anna B.; Park, Taejin; Makowski, David; Havlik, Petr; Obersteiner, Michael; Wang, Jingmeng; Krause, Andreas; Liu, Wenfeng
    Most scenarios from integrated assessment models (IAMs) that project greenhouse gas emissions include the use of bioenergy as a means to reduce CO2 emissions or even to achieve negative emissions (together with CCS carbon capture and storage). The potential amount of CO2 that can be removed from the atmosphere depends, among others, on the yields of bioenergy crops, the land available to grow these crops and the efficiency with which CO2 produced by combustion is captured. While bioenergy crop yields can be simulated by models, estimates of the spatial distribution of bioenergy yields under current technology based on a large number of observations are currently lacking. In this study, a random-forest (RF) algorithm is used to upscale a bioenergy yield dataset of 3963 observations covering Miscanthus, switchgrass, eucalypt, poplar and willow using climatic and soil conditions as explanatory variables. The results are global yield maps of five important lignocellulosic bioenergy crops under current technology, climate and atmospheric CO2 conditions at a 0:5 0:5 spatial resolution. We also provide a combined "best bioenergy crop" yield map by selecting one of the five crop types with the highest yield in each of the grid cells, eucalypt and Miscanthus in most cases. The global median yield of the best crop is 16.3 tDMha1 yr1 (DM dry matter). High yields mainly occur in the Amazon region and southeastern Asia. We further compare our empirically derived maps with yield maps used in three IAMs and find that the median yields in our maps are 50% higher than those in the IAM maps. Our estimates of gridded bioenergy crop yields can be used to provide bioenergy yields for IAMs, to evaluate land surface models or to identify the most suitable lands for future bioenergy crop plantations. The 0:5 0:5 global maps for yields of different bioenergy crops and the best crop and for the best crop composition generated from this study can be download from https://doi.org/10.5281/zenodo.3274254 (Li, 2019). © 2019 Cambridge University Press. All rights reserved.
  • Item
    Historical and future changes in global flood magnitude - evidence from a model-observation investigation
    (Munich : EGU, 2020) Do, Hong Xuan; Zhao, Fang; Westra, Seth; Leonard, Michael; Gudmundsson, Lukas; Boulange, Julien Eric Stanislas; Chang, Jinfeng; Ciais, Philippe; Gerten, Dieter; Gosling, Simon N.; Müller Schmied, Hannes; Stacke, Tobias; Telteu, Camelia-Eliza; Wada, Yoshihide
    To improve the understanding of trends in extreme flows related to flood events at the global scale, historical and future changes of annual maxima of 7 d streamflow are investigated, using a comprehensive streamflow archive and six global hydrological models. The models' capacity to characterise trends in annual maxima of 7 d streamflow at the continental and global scale is evaluated across 3666 river gauge locations over the period from 1971 to 2005, focusing on four aspects of trends: (i) mean, (ii) standard deviation, (iii) percentage of locations showing significant trends and (iv) spatial pattern. Compared to observed trends, simulated trends driven by observed climate forcing generally have a higher mean, lower spread and a similar percentage of locations showing significant trends. Models show a low to moderate capacity to simulate spatial patterns of historical trends, with approximately only from 12 % to 25 % of the spatial variance of observed trends across all gauge stations accounted for by the simulations. Interestingly, there are statistically significant differences between trends simulated by global hydrological models (GHMs) forced with observational climate and by those forced by bias-corrected climate model output during the historical period, suggesting the important role of the stochastic natural (decadal, inter-annual) climate variability. Significant differences were found in simulated flood trends when averaged only at gauged locations compared to those averaged across all simulated grid cells, highlighting the potential for bias toward well-observed regions in our understanding of changes in floods. Future climate projections (simulated under the RCP2.6 and RCP6.0 greenhouse gas concentration scenarios) suggest a potentially high level of change in individual regions, with up to 35 % of cells showing a statistically significant trend (increase or decrease; at 10 % significance level) and greater changes indicated for the higher concentration pathway. Importantly, the observed streamflow database under-samples the percentage of locations consistently projected with increased flood hazards under the RCP6.0 greenhouse gas concentration scenario by more than an order of magnitude (0.9 % compared to 11.7 %). This finding indicates a highly uncertain future for both flood-prone communities and decision makers in the context of climate change. © Author(s) 2020.
  • Item
    Time-varying impact of climate on maize and wheat yields in France since 1900
    (Bristol : IOP Publ., 2020) Ceglar, Andrej; Zampieri, Matteo; Gonzalez-Reviriego, Nube; Ciais, Philippe; Schauberger, Bernhard; Van der Velde, Marijn
    Climate services that can anticipate crop yields can potentially increase the resilience of food security in the face of climate change. These services are based on our understanding of how crop yield anomalies are related to climate anomalies, yet the share of global crop yield variability explained directly by climate factors is largely variable between regions. In Europe, France has been a major crop producer since the beginning of the 20th Century. Process based and statistical approaches to model crop yields driven by observed climate have proven highly challenging in France. This is especially due to a high regional diversity in climate but also due to environmental and agro-management factors. An additional level of uncertainty is introduced if these models are driven by seasonal-to-decadal surface climate predictions due to their low performances before the harvesting months of both wheat and maize in western Europe. On the other hand, large scale circulation patterns can possibly be better predicted than the regional surface climate, which offers the opportunity to rely on large scale circulation patterns as an alternative to local climate variables. This method assumes a certain degree of stationarity in the relationships between large scale patterns, surface climate variables, and crop yield anomalies. However, such an assumption was never tested, because of the lack of suitable long-term data. This study uses a unique dataset of subnational crop yields in France covering more than a century. By calibrating and comparing statistical models linking large scale circulation patterns and observed surface climate variables to crop yield anomalies, we can demonstrate that the relationship between large scale patterns and surface variables relevant for crop yields is not stationary. Therefore, large scale circulation pattern based crop yield forecasting methods can be adopted for seasonal predictions provided that regression parameters are constantly updated. However, the statistical crop yield models based on large-scale circulation patterns are not suitable for decadal predictions or climate change impact assessments at even longer time-scales.