Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

The GGCMI Phase 2 experiment: Global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0)

2020, Franke, James A., Müller, Christoph, Elliott, Joshua, Ruane, Alex C., Jägermeyr, Jonas, Balkovic, Juraj, Ciais, Philippe, Dury, Marie, Falloon, Pete D., Folberth, Christian, François, Louis, Hank, Tobias, Hoffmann, Munir, Izaurralde, R. Cesar, Jacquemin, Ingrid, Jones, Curtis, Khabarov, Nikolay, Koch, Marian, Li, Michelle, Liu, Wenfeng, Olin, Stefan, Phillips, Meridel, Pugh, Thomas A. M., Reddy, Ashwan, Wang, Xuhui, Williams, Karina, Zabel, Florian, Moyer, Elisabeth J.

Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Process-based crop models, which represent plant physiological and soil processes, are necessary tools for this purpose since they allow representing future climate and management conditions not sampled in the historical record and new locations to which cultivation may shift. However, process-based crop models differ in many critical details, and their responses to different interacting factors remain only poorly understood. The Global Gridded Crop Model Intercomparison (GGCMI) Phase 2 experiment, an activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to provide a systematic parameter sweep focused on climate change factors and their interaction with overall soil fertility, to allow both evaluating model behavior and emulating model responses in impact assessment tools. In this paper we describe the GGCMI Phase 2 experimental protocol and its simulation data archive. A total of 12 crop models simulate five crops with systematic uniform perturbations of historical climate, varying CO2, temperature, water supply, and applied nitrogen (“CTWN”) for rainfed and irrigated agriculture, and a second set of simulations represents a type of adaptation by allowing the adjustment of growing season length. We present some crop yield results to illustrate general characteristics of the simulations and potential uses of the GGCMI Phase 2 archive. For example, in cases without adaptation, modeled yields show robust decreases to warmer temperatures in almost all regions, with a nonlinear dependence that means yields in warmer baseline locations have greater temperature sensitivity. Inter-model uncertainty is qualitatively similar across all the four input dimensions but is largest in high-latitude regions where crops may be grown in the future.

Loading...
Thumbnail Image
Item

A generic pixel-to-point comparison for simulated large-scale ecosystem properties and ground-based observations: An example from the Amazon region

2018, Rammig, Anja, Heinke, Jens, Hofhansl, Florian, Verbeeck, Hans, Baker, Timothy R., Christoffersen, Bradley, Ciais, Philippe, De Deurwaerder, Hannes, Fleischer, Katrin, Galbraith, David, Guimberteau, Matthieu, Huth, Andreas, Johnson, Michelle, Krujit, Bart, Langerwisch, Fanny, Meir, Patrick, Papastefanou, Phillip, Sampaio, Gilvan, Thonicke, Kirsten, von Randow, Celso, Zang, Christian, Rödig, Edna

Comparing model output and observed data is an important step for assessing model performance and quality of simulation results. However, such comparisons are often hampered by differences in spatial scales between local point observations and large-scale simulations of grid cells or pixels. In this study, we propose a generic approach for a pixel-to-point comparison and provide statistical measures accounting for the uncertainty resulting from landscape variability and measurement errors in ecosystem variables. The basic concept of our approach is to determine the statistical properties of small-scale (within-pixel) variability and observational errors, and to use this information to correct for their effect when large-scale area averages (pixel) are compared to small-scale point estimates. We demonstrate our approach by comparing simulated values of aboveground biomass, woody productivity (woody net primary productivity, NPP) and residence time of woody biomass from four dynamic global vegetation models (DGVMs) with measured inventory data from permanent plots in the Amazon rainforest, a region with the typical problem of low data availability, potential scale mismatch and thus high model uncertainty. We find that the DGVMs under- and overestimate aboveground biomass by 25% and up to 60%, respectively. Our comparison metrics provide a quantitative measure for model-data agreement and show moderate to good agreement with the region-wide spatial biomass pattern detected by plot observations. However, all four DGVMs overestimate woody productivity and underestimate residence time of woody biomass even when accounting for the large uncertainty range of the observational data. This is because DGVMs do not represent the relation between productivity and residence time of woody biomass correctly. Thus, the DGVMs may simulate the correct large-scale patterns of biomass but for the wrong reasons. We conclude that more information about the underlying processes driving biomass distribution are necessary to improve DGVMs. Our approach provides robust statistical measures for any pixel-to-point comparison, which is applicable for evaluation of models and remote-sensing products.

Loading...
Thumbnail Image
Item

Potential yield simulated by global gridded crop models: using a process-based emulator to explain their differences

2021-3-23, Ringeval, Bruno, Müller, Christoph, Pugh, Thomas A. M., Mueller, Nathaniel D., Ciais, Philippe, Folberth, Christian, Liu, Wenfeng, Debaeke, Philippe, Pellerin, Sylvain

How global gridded crop models (GGCMs) differ in their simulation of potential yield and reasons for those differences have never been assessed. The GGCM Intercomparison (GGCMI) offers a good framework for this assessment. Here, we built an emulator (called SMM for simple mechanistic model) of GGCMs based on generic and simplified formalism. The SMM equations describe crop phenology by a sum of growing degree days, canopy radiation absorption by the Beer–Lambert law, and its conversion into aboveground biomass by a radiation use efficiency (RUE). We fitted the parameters of this emulator against gridded aboveground maize biomass at the end of the growing season simulated by eight different GGCMs in a given year (2000). Our assumption is that the simple set of equations of SMM, after calibration, could reproduce the response of most GGCMs so that differences between GGCMs can be attributed to the parameters related to processes captured by the emulator. Despite huge differences between GGCMs, we show that if we fit both a parameter describing the thermal requirement for leaf emergence by adjusting its value to each grid-point in space, as done by GGCM modellers following the GGCMI protocol, and a GGCM-dependent globally uniform RUE, then the simple set of equations of the SMM emulator is sufficient to reproduce the spatial distribution of the original aboveground biomass simulated by most GGCMs. The grain filling is simulated in SMM by considering a fixed-in-time fraction of net primary productivity allocated to the grains (frac) once a threshold in leaves number (nthresh) is reached. Once calibrated, these two parameters allow for the capture of the relationship between potential yield and final aboveground biomass of each GGCM. It is particularly important as the divergence among GGCMs is larger for yield than for aboveground biomass. Thus, we showed that the divergence between GGCMs can be summarized by the differences in a few parameters. Our simple but mechanistic model could also be an interesting tool to test new developments in order to improve the simulation of potential yield at the global scale.