Search Results

Now showing 1 - 4 of 4
  • Item
    Laser spectroscopic technique for direct identification of a single virus I: FASTER CARS
    (Washington, DC : National Acad. of Sciences, 2020) Deckert, Volker; Deckert-Gaudig, Tanja; Cialla-May, Dana; Popp, Jürgen; Zell, Roland; Deinhard-Emmer, Stefanie; Sokolov, Alexei V.; Yi, Zhenhuan; Scully, Marlan O.
    From the famous 1918 H1N1 influenza to the present COVID-19 pandemic, the need for improved viral detection techniques is all too apparent. The aim of the present paper is to show that identification of individual virus particles in clinical sample materials quickly and reliably is near at hand. First of all, our team has developed techniques for identification of virions based on a modular atomic force microscopy (AFM). Furthermore, femtosecond adaptive spectroscopic techniques with enhanced resolution via coherent anti-Stokes Raman scattering (FASTER CARS) using tip-enhanced techniques markedly improves the sensitivity [M. O. Scully, et al, Proc. Natl. Acad. Sci. U.S.A. 99, 10994-11001 (2002)].
  • Item
    Using Raman spectroscopy in infection research
    (Heidelberg : Spektrum, 2022) Cialla-May, Dana; Rösch, Petra; Popp, Jürgen
    Raman spectroscopy allows to analyze bacteria and other microorganisms label and destruction free. With different Raman techniques either colonies on agar plates or small structures like single bacterial cells can be analyzed allowing for their identification as well as enabling 2D and 3D information of intracellular bacteria or biofilms. Using surface enhanced Raman spectroscopy (SERS) allows detecting and identifying viruses as well as antibiotics relevant in the treatment of infections.
  • Item
    Raman Signal Enhancement Tunable by Gold-Covered Porous Silicon Films with Different Morphology
    (Basel : MDPI, 2020) Agafilushkina, Svetlana N.; Žukovskaja, Olga; Dyakov, Sergey A.; Weber, Karina; Sivakov, Vladimir; Popp, Jürgen; Cialla-May, Dana; Osminkina, Liubov A.
    The ease of fabrication, large surface area, tunable pore size and morphology as well surface modification capabilities of a porous silicon (PSi) layer make it widely used for sensoric applications. The pore size of a PSi layer can be an important parameter when used as a matrix for creating surface-enhanced Raman scattering (SERS) surfaces. Here, we evaluated the SERS activity of PSi with pores ranging in size from meso to macro, the surface of which was coated with gold nanoparticles (Au NPs). We found that different pore diameters in the PSi layers provide different morphology of the gold coating, from an almost monolayer to 50 nm distance between nanoparticles. Methylene blue (MB) and 4-mercaptopyridine (4-MPy) were used to describe the SERS activity of obtained Au/PSi surfaces. The best Raman signal enhancement was shown when the internal diameter of torus-shaped Au NPs is around 35 nm. To understand the role of plasmonic resonances in the observed SERS spectrum, we performed electromagnetic simulations of Raman scattering intensity as a function of the internal diameter. The results of these simulations are consistent with the obtained experimental data
  • Item
    Surface enhanced Raman spectroscopy-based evaluation of the membrane protein composition of the organohalide-respiring Sulfurospirillum multivorans
    (Chichester [u.a.] : Wiley, 2021) Cialla-May, Dana; Gadkari, Jennifer; Winterfeld, Andreea; Hübner, Uwe; Weber, Karina; Diekert, Gabriele; Schubert, Torsten; Goris, Tobias; Popp, Jürgen
    Bacteria often employ different respiratory chains that comprise membrane proteins equipped with various cofactors. Monitoring the protein inventory that is present in the cells under a given cultivation condition is often difficult and time-consuming. One example of a metabolically versatile bacterium is the microaerophilic organohalide-respiring Sulfurospirillum multivorans. Here, we used surface enhanced Raman spectroscopy (SERS) to quickly identify the cofactors involved in the respiration of S. multivorans. We cultured the organism with either tetrachloroethene (perchloroethylene, PCE), fumarate, nitrate, or oxygen as electron acceptors. Because the corresponding terminal reductases of the four different respiratory chains harbor different cofactors, specific fingerprint signals in SERS were expected. Silver nanostructures fabricated by means of electron beam lithography were coated with the membrane fractions extracted from the four S. multivorans cultivations, and SERS spectra were recorded. In the case of S. multivorans cultivated with PCE, the recorded SERS spectra were dominated by Raman peaks specific for Vitamin B12. This is attributed to the high abundance of the PCE reductive dehalogenase (PceA), the key enzyme in PCE respiration. After cultivation with oxygen, fumarate, or nitrate, no Raman spectral features of B12 were found. © 2020 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd