Search Results

Now showing 1 - 2 of 2
  • Item
    Functionalized carbon nanotubes as transporters for antisense oligodeoxynucleotides
    (Cambridge : Royal Society of Chemistry, 2014) Kaufmann, Anika; Kunhardt, David; Cirillo, Giuseppe; Hampel, Silke; Schwenzer, Bernd
    The use of DNA-based therapeutics requires efficient delivery systems to transport the DNA to their place of action within the cell. To accomplish this, we investigated multiwalled carbon nanotubes (pristine MWCNT, p-MWCNT) functionalized with hydroxyl groups via 1,3-dipolar cycloaddition. In this way, we have obtained MWCNT-f-OH with improved stability in aqueous dispersions which is an advantageous property for their use in cellular environments. Afterwards, a carrier strand oligodeoxynucleotide (CS-ODN) was adsorbed to MWCNT-f-OH followed by hybridization with a therapeutic antisense oligodeoxynucleotide (AS-ODN). The amount of adsorbed CS-ODN, as well as the complementary AS-ODN and a non-complementary oligodeoxynucleotide (NS-ODN) as reference, was directly measured by radionuclide labeling of ODNs. We show that subsequent release of AS-ODNs and NS-ODNs was possible for MWCNT-f-OH above the melting temperature of AS-ODNs at 80 °C and under physiological conditions at different pH values at 37 °C. We also show a very low influence of p-MWCNT and MWCNT-f-OH on the cell viability of the bladder carcinoma (BCa) cell line EJ28 and that both MWCNT types were internalized by EJ28. Therefore, MWCNT-f-OH represents a promising carrier able to transport and release AS-ODNs inside cells.
  • Item
    Recent advances in the synthesis and biomedical applications of nanocomposite hydrogels
    (Basel : MDPI, 2015) Spizzirri, Umile Gianfranco; Curcio, Manuela; Cirillo, Giuseppe; Spataro, Tania; Vittorio, Orazio; Picci, Nevio; Hampel, Silke; Iemma, Francesca; Nicoletta, Fiore Pasquale
    Hydrogels sensitive to electric current are usually made of polyelectrolytes and undergo erosion, swelling, de-swelling or bending in the presence of an applied electric field. The electrical conductivity of many polymeric materials used for the fabrication of biomedical devices is not high enough to achieve an effective modulation of the functional properties, and thus, the incorporation of conducting materials (e.g., carbon nanotubes and nanographene oxide) was proposed as a valuable approach to overcome this limitation. By coupling the biological and chemical features of both natural and synthetic polymers with the favourable properties of carbon nanostructures (e.g., cellular uptake, electromagnetic and magnetic behaviour), it is possible to produce highly versatile and effective nanocomposite materials. In the present review, the recent advances in the synthesis and biomedical applications of electro-responsive nanocomposite hydrogels are discussed.