Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Expression stability of commonly used reference genes in canine articular connective tissues

2007, Ayers, Duncan, Clements, Dylan N., Salway, Fiona, Day, Philip J.R.

Background: The quantification of gene expression in tissue samples requires the use of reference genes to normalise transcript numbers between different samples. Reference gene stability may vary between different tissues, and between the same tissue in different disease states. We evaluated the stability of 9 reference genes commonly used in human gene expression studies. Realtime reverse transcription PCR and a mathematical algorithm were used to establish which reference genes were most stably expressed in normal and diseased canine articular tissues and two canine cell lines stimulated with lipolysaccaride (LPS). Results: The optimal reference genes for comparing gene expression data between normal and diseased infrapatella fat pad were RPL13A and YWHAZ (M = 0.56). The ideal reference genes for comparing normal and osteoarthritic (OA) cartilage were RPL13A and SDHA (M = 0.57). The best reference genes for comparing normal and ruptured canine cranial cruciate ligament were B2M and TBP (M = 0.59). The best reference genes for normalising gene expression data from normal and LPS stimulated cell lines were SDHA and YWHAZ (K6) or SDHA and HMBS (DH82), which had expression stability (M) values of 0.05 (K6) and 0.07 (DH82) respectively. The number of reference genes required to reduce pairwise variation (V) to <0.20 was 4 for cell lines, 5 for cartilage, 7 for cranial cruciate ligament and 8 for fat tissue. Reference gene stability was not related to the level of gene expression. Conclusion: The reference genes demonstrating the most stable expression within each different canine articular tissue were identified, but no single reference gene was identified as having stable expression in all different tissue types. This study underlines the necessity to select reference genes on the basis of tissue and disease specific expression profile evaluation and highlights the requirement for the identification of new reference genes with greater expression stability for use in canine articular tissue gene expression studies.

Loading...
Thumbnail Image
Item

Identification of new reference genes for the normalisation of canine osteoarthritic joint tissue transcripts from microarray data

2007, Maccoux, Lindsey J., Clements, Dylan N., Salway, Fiona, Day, Philip J.R.

Background: Real-time reverse transcriptase quantitative polymerase chain reaction (real-time RTqPCR) is the most accurate measure of gene expression in biological systems. The comparison of different samples requires the transformation of data through a process called normalisation. Reference or housekeeping genes are candidate genes which are selected on the basis of constitutive expression across samples, and allow the quantification of changes in gene expression. At present, no reference gene has been identified for any organism which is universally optimal for use across different tissue types or disease situations. We used microarray data to identify new reference genes generated from total RNA isolated from normal and osteoarthritic canine articular tissues (bone, ligament, cartilage, synovium and fat). RTqPCR assays were designed and applied to each different articular tissue. Reference gene expression stability and ranking was compared using three different mathematical algorithms. Results: Twelve new potential reference genes were identified from microarray data. One gene (mitochondrial ribosomal protein S7 [MRPS7]) was stably expressed in all five of the articular tissues evaluated. One gene HIRA interacting protein 5 isoform 2 [HIRP5]) was stably expressed in four of the tissues evaluated. A commonly used reference gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was not stably expressed in any of the tissues evaluated. Most consistent agreement between rank ordering of reference genes was observed between Bestkeeper© and geNorm, although each method tended to agree on the identity of the most stably expressed genes and the least stably expressed genes for each tissue. New reference genes identified using microarray data normalised in a conventional manner were more stable than those identified by microarray data normalised by using a real-time RT-qPCR methodology. Conclusion: Microarray data normalised by a conventional manner can be filtered using a simple stepwise procedure to identify new reference genes, some of which will demonstrate good measures of stability. Mitochondrial ribosomal protein S7 is a new reference gene worthy of investigation in other canine tissues and diseases. Different methods of reference gene stability assessment will generally agree on the most and least stably expressed genes, when co-regulation is not present.