Search Results

Now showing 1 - 2 of 2
  • Item
    High Performance Asymmetric Coupled Line Balun at Sub-THz Frequency
    (Basel : MDPI, 2019) Ali, Abdul; Yun, Jongwon; Ng, Herman Jalli; Kissinger, Dietmar; Giannini, Franco; Colantonio, Paolo
    In this paper, we report a high-performance balun with characteristics suitable for future broadband sub-THz differential circuits. The idea of the balun is based on three asymmetric coupled lines, which enhance the odd mode capacitances to equalize the even/odd mode phase velocities. The inner line of the three asymmetric coupled lines is configured to form the open stub ( λ /2), while the outer lines form short stubs ( λ /4). To further reduce the phase imbalance, the short stubs in one of the arms of the balun are connected with vias and a lower metal layer. The balun is developed using the standard 130-nm SiGe BiCMOSback-end process and EM simulated with ADS momentum and Sonnet. The −10-dB reflection coefficient (S 11 ) bandwidth of the balun is 136 GHz (88–224 GHz). It shows insertion loss (including RF pads) <1.5 dB, phase imbalance <7 degrees, and amplitude imbalance <1 dB at 94–177 GHz. Furthermore, a scaled-down version of the balun operates on the WR-6, WR-5, and WR-4 frequency bands without significant degradation in its performance. Such characteristics of the balun make it an ideal candidate for various broadband differential circuits.
  • Item
    168-195 GHz Power Amplifier with Output Power Larger Than 18 dBm in BiCMOS Technology
    (New York, NY : IEEE, 2020) Ali, Abdul; Yun, Jongwon; Giannini, Franco; Ng, Herman Jalli; Kissinger, Dietmar; Colantonio, Paolo
    This paper presents a 4-way combined G-band power amplifier (PA) fabricated with a 130-nm SiGe BiCMOS process. First, a single-ended PA based on the cascode topology (CT) is designed at 185 GHz, which consists of three stages to get an overall gain and an output power higher than 27 dB and 13 dBm, respectively. Then, a 4-way combiner/splitter was designed using low-loss transmission lines at 130-210 GHz. Finally, the combiner was loaded with four single-ended PAs to complete the design of a 4-way combined PA. The chip of the fabricated PA occupies an area of 1.35mm2. The realized PA shows a saturated output power of 18.1 dBm with a peak gain of 25.9 dB and power-added efficiency (PAE) of 3.5% at 185 GHz. A maximum output power of 18.7 dBm with PAE of 4.4% is achieved at 170 GHz. The 3-dB and 6-dB bandwidth of the PA are 27 and 42 GHz, respectively. In addition, the PA delivers a saturated output power higher than 18 dBm in the frequency range 140-186 GHz. To the best of our knowledge, the power reported in this paper is the highest for G-band SiGe BiCMOS PAs. © 2013 IEEE.