Search Results

Now showing 1 - 4 of 4
  • Item
    Analytically tractable climate–carbon cycle feedbacks under 21st century anthropogenic forcing
    (München : European Geopyhsical Union, 2018) Lade, Steven J.; Donges, Jonathan F.; Fetzer, Ingo; Anderies, John M.; Beer, Christian; Cornell, Sarah E.; Gasser, Thomas; Norberg, Jon; Richardson, Katherine; Rockström, Johan; Steffen, Will
    Changes to climate–carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate–carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate–carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate–carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate–carbon feedback; and concentration–carbon feedbacks may be more sensitive to future climate change than climate–carbon feedbacks. Simple models such as that developed here also provide "workbenches" for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.
  • Item
    Closing the loop: Reconnecting human dynamics to Earth System science
    (London [u.a.] : Sage, 2017) Donges, Jonathan F.; Winkelmann, Ricarda; Lucht, Wolfgang; Cornell, Sarah E.; Dyke, James G.; Rockström, Johan; Heitzig, Jobst; Schellnhuber, Hans Joachim
    International commitment to the appropriately ambitious Paris climate agreement and the United Nations Sustainable Development Goals in 2015 has pulled into the limelight the urgent need for major scientific progress in understanding and modelling the Anthropocene, the tightly intertwined social-environmental planetary system that humanity now inhabits. The Anthropocene qualitatively differs from previous eras in Earth’s history in three key characteristics: (1) There is planetary-scale human agency. (2) There are social and economic networks of teleconnections spanning the globe. (3) It is dominated by planetary-scale social-ecological feedbacks. Bolting together old concepts and methodologies cannot be an adequate approach to describing this new geological era. Instead, we need a new paradigm in Earth System science that is founded equally on a deep understanding of the physical and biological Earth System – and of the economic, social and cultural forces that are now an intrinsic part of it. It is time to close the loop and bring socially mediated dynamics explicitly into theory, analysis and models that let us study the whole Earth System.
  • Item
    Trajectories of the Earth System in the Anthropocene
    (Washington, DC : NAS, 2018) Steffen, Will; Rockström, Johan; Richardson, Katherine; Lenton, Timothy M.; Folke, Carl; Liverman, Diana; Summerhayes, Colin P.; Barnosky, Anthony D.; Cornell, Sarah E.; Crucifix, Michel; Donges, Jonathan F.; Fetzer, Ingo; Lade, Steven J.; Scheffer, Marten; Winkelmann, Ricarda; Schellnhuber, Hans Joachim
    We explore the risk that self-reinforcing feedbacks could push the Earth System toward a planetary threshold that, if crossed, could prevent stabilization of the climate at intermediate temperature rises and cause continued warming on a “Hothouse Earth” pathway even as human emissions are reduced. Crossing the threshold would lead to a much higher global average temperature than any interglacial in the past 1.2 million years and to sea levels significantly higher than at any time in the Holocene. We examine the evidence that such a threshold might exist and where it might be. If the threshold is crossed, the resulting trajectory would likely cause serious disruptions to ecosystems, society, and economies. Collective human action is required to steer the Earth System away from a potential threshold and stabilize it in a habitable interglacial-like state. Such action entails stewardship of the entire Earth System—biosphere, climate, and societies—and could include decarbonization of the global economy, enhancement of biosphere carbon sinks, behavioral changes, technological innovations, new governance arrangements, and transformed social values.
  • Item
    Resolving ecological feedbacks on the ocean carbon sink in Earth system models
    (Göttingen : Copernicus Publ., 2021) Armstrong McKay, David I.; Cornell, Sarah E.; Richardson, Katherine; Rockström, Johan
    The Earth's oceans are one of the largest sinks in the Earth system for anthropogenic CO2 emissions, acting as a negative feedback on climate change. Earth system models project that climate change will lead to a weakening ocean carbon uptake rate as warm water holds less dissolved CO2 and as biological productivity declines. However, most Earth system models do not incorporate the impact of warming on bacterial remineralisation and rely on simplified representations of plankton ecology that do not resolve the potential impact of climate change on ecosystem structure or elemental stoichiometry. Here, we use a recently developed extension of the cGEnIE (carbon-centric Grid Enabled Integrated Earth system model), ecoGEnIE, featuring a trait-based scheme for plankton ecology (ECOGEM), and also incorporate cGEnIE's temperature-dependent remineralisation (TDR) scheme. This enables evaluation of the impact of both ecological dynamics and temperature-dependent remineralisation on particulate organic carbon (POC) export in response to climate change. We find that including TDR increases cumulative POC export relative to default runs due to increased nutrient recycling (+∼1.3 %), whereas ECOGEM decreases cumulative POC export by enabling a shift to smaller plankton classes (−∼0.9 %). However, interactions with carbonate chemistry cause opposite sign responses for the carbon sink in both cases: TDR leads to a smaller sink relative to default runs (−∼1.0 %), whereas ECOGEM leads to a larger sink (+∼0.2 %). Combining TDR and ECOGEM results in a net strengthening of POC export (+∼0.1 %) and a net reduction in carbon sink (−∼0.7 %) relative to default. These results illustrate the degree to which ecological dynamics and biodiversity modulate the strength of the biological pump, and demonstrate that Earth system models need to incorporate ecological complexity in order to resolve non-linear climate–biosphere feedbacks.