Search Results

Now showing 1 - 2 of 2
  • Item
    S2S reboot: An argument for greater inclusion of machine learning in subseasonal to seasonal forecasts
    (Malden, MA : Wiley-Blackwell, 2018) Cohen, Judah; Coumou, Dim; Hwang, Jessica; Mackey, Lester; Orenstein, Paulo; Totz, Sonja; Tziperman, Eli
    The discipline of seasonal climate prediction began as an exercise in simple statistical techniques. However, today the large government forecast centers almost exclusively rely on complex fully coupled dynamical forecast systems for their subseasonal to seasonal (S2S) predictions while statistical techniques are mostly neglected and those techniques still in use have not been updated in decades. In this Opinion Article, we argue that new statistical techniques mostly developed outside the field of climate science, collectively referred to as machine learning, can be adopted by climate forecasters to increase the accuracy of S2S predictions. We present an example of where unsupervised learning demonstrates higher accuracy in a seasonal prediction than the state-of-the-art dynamical systems. We also summarize some relevant machine learning methods that are most applicable to climate prediction. Finally, we show by comparing real-time dynamical model forecasts with observations from winter 2017/2018 that dynamical model forecasts are almost entirely insensitive to polar vortex (PV) variability and the impact on sensible weather. Instead, statistical forecasts more accurately predicted the resultant sensible weather from a mid-winter PV disruption than the dynamical forecasts. The important implication from the poor dynamical forecasts is that if Arctic change influences mid-latitude weather through PV variability, then the ability of dynamical models to demonstrate the existence of such a pathway is compromised. We conclude by suggesting that S2S prediction will be most beneficial to the public by incorporating mixed or a hybrid of dynamical forecasts and updated statistical techniques such as machine learning.
  • Item
    Alberta wildfire 2016: Apt contribution from anomalous planetary wave dynamics
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2018) Petoukhov, Vladimir; Petri, Stefan; Kornhuber, Kai; Thonicke, Kirsten; Coumou, Dim; Schellnhuber, Hans Joachim
    In May-June 2016 the Canadian Province of Alberta suffered one of the most devastating wildfires in its history. Here we show that in mid-April to early May 2016 the large-scale circulation in the mid- and high troposphere of the middle and sub-polar latitudes of the northern hemisphere featured a persistent high-amplitude planetary wave structure dominated by the non-dimensional zonal wave number 4. The strongest anticyclonic wing of this structure was located over western Canada. In combination with a very strong El NiƱo event in winter 2015/2016 this favored highly anomalous, tinder-dry and high-temperature conditions at the surface in that area, entailing an increased fire hazard there. This critically contributed to the ignition of the Alberta Wildfire in May 2016, appearing to be the costliest disaster in Canadian history thus far.