Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Significant increase of aerosol number concentrations in air masses crossing a densely trafficked sea area

2015, Kecorius, Simonas, Kivekäs, Niku, Kristensson, Adam, Tuch, Thomas, Covert, David S., Birmili, Wolfram, Lihavainen, Heikki, Hyvärinen, Antti-Pekka, Martinsson, Johan, Sporre, Moa K., Swietlicki, Erik, Wiedensohler, Alfred, Ulevicius, Vidmantas

In this study, we evaluated 10 months data (September 2009 to June 2010) of atmospheric aerosol particle number size distribution at three atmospheric observation stations along the Baltic Sea coast: Vavihill (upwind, Sweden), Utö (upwind, Finland), and Preila (downwind, Lithuania). Differences in aerosol particle number size distributions between the upwind and downwind stations during situations of connected atmospheric flow, when the air passed each station, were used to assess the contribution of ship emissions to the aerosol number concentration (diameter interval 50–400 nm) in the Lithuanian background coastal environment. A clear increase in particle number concentration could be noticed, by a factor of 1.9 from Utö to Preila (the average total number concentration at Utö was 791 cm−3), and by a factor of 1.6 from Vavihill to Preila (the average total number concentration at Vavihill was 998 cm−3). The simultaneous measurements of absorption Ångström exponents close to unity at Preila supported our conclusion that ship emissions in the Baltic Sea contributed to the increase in particle number concentration at Preila.

Loading...
Thumbnail Image
Item

Aerosol number to volume ratios in Southwest Portugal during ACE-2

2017, Dusek, Ulrike, Covert, David S., Wiedensohler, Alfred, Neusúss, Christian, Weise, Diana

Past studies have indicated that long-term averages of the aerosol number to volume ratios (defined as the number of particles larger than a certain diameter divided by the particle volume over some range less than 1 μm) show little variability over the Atlantic. This work presents number to volume ratios (R) measured during the ACE-2 experiment on the land-based Sagres field site located in Southwest Portugal. The values of R measured in Sagres compare reasonably well with previous measurements over the Atlantic. The main emphasis of this work is therefore to investigate more closely possible reasons for the observed stability of the number to volume ratio. Aerosol number size distributions measured in Sagres are parametrized by the sum of two log-normal distributions fitted to the accumulation and to the Aitken mode. The main factor that limits the variability of R is that the parameters of these log-normal distributions are not always independent but show some covariance. In polluted air mass types correlations between parameters of the Aitken and accumulation mode are mostly responsible for stabilizing R. In marine air mass types the variability of R is reduced by an inverse relationship between the accumulation-mode mean diameter and standard deviation, consistent with condensational processes and cloud processing working on the aerosol. However, despite this reduction, the variability of R in marine air mass types is still considerable and R is linearly dependent on the number concentration of particles larger than 90 nm. This partly due to a mil of Aitken-mode particles extending to sizes larger than 90 nm.

Loading...
Thumbnail Image
Item

Cloud condensation nuclei spectra derived from size distributions and hygroscopic properties of the aerosol in coastal south-west Portugal during ACE-2

2016, Dusek, Ulrike, Covert, David S., Wiedensohler, Alfred, Neusüss, Christian, Weise, Diana, Cantrell, Will

In this work we propose and test a method to calculate cloud condensation nuclei (CCN) spectra basedon aerosol number size distributions and hygroscopic growth factors. Sensitivity studies show thatthis method can be used in a wide variety of conditions except when the aerosol consist mainly oforganic compounds. One crucial step in the calculations, estimating soluble ions in an aerosol particlebased on hygroscopic growth factors, is tested in an internal hygroscopic consistency study. The resultsshow that during the second Aerosol Characterization Experiment (ACE-2) the number concentrationof inorganic ions analyzed in impactor samples could be reproduced from measured growth factorswithin the measurement uncertainties at the measurement site in Sagres, Portugal. CCN spectra were calculated based on data from the ACE-2 field experiment at the Sagres site.The calculations overestimate measured CCN spectra on average by approximately 30%, which iscomparable to the uncertainties in measurements and calculations at supersaturations below 0.5%. Thecalculated CCN spectra were averaged over time periods when Sagres received clean air masses and airmasses influenced by aged and recent pollution. Pollution outbreaks enhance the CCN concentrationsat supersaturations near 0.2% by a factor of 3 (aged pollution) to 5 (recent pollution) compared to theclean marine background concentrations. In polluted air masses, the shape of the CCN spectra changes.The clean spectra can be approximated by a power function, whereas the polluted spectra are betterapproximated by an error function.

Loading...
Thumbnail Image
Item

Hygroscopic properties of aerosol particles in the northeastern Atlantic during ACE-2

2016, Swietlicki, Erik, Zhou, Jingchuan, Covert, David S., Hämeri, Kaarle, Busch, Bernhard, Väkeva, Minna, Dusek, Ulrike, Berg, Olle H., Wiedensohler, Alfred, Aalto, Pasi, Mäkelä, Jyrki, Martinsson, Bengt G., Papaspiropoulos, Giorgos, Mentes, Besim, Frank, Göran, Stratmann, Frank

Measurements of the hygroscopic properties of sub-micrometer atmospheric aerosol particles were performed with hygroscopic tandem differential mobility analysers (H-TDMA) at 5 sites in the subtropical north-eastern Atlantic during the second Aerosol Characterization Experiment (ACE-2) from 16 June to 25 July 1997. Four of the sites were in the marine boundary layer and one was, at least occasionally, in the lower free troposphere. The hygroscopic diameter growth factors of individual aerosol particles in the dry particle diameter range 10−440 nm were generally measured for changes in relative humidity (RH) from <10% to 90%. In the marine boundary layer, growth factors at 90% RH were dependent on location, air mass type and particle size. The data was dominated by a unimodal growth distribution of more-hygroscopic particles, although a bimodal growth distribution including less-hygroscopic particles was observed at times, most often in the more polluted air masses. In clean marine air masses the more-hygroscopic growth factors ranged from about 1.6 to 1.8 with a consistent increase in growth factor with increasing particle size. There was also a tendency toward higher growth factors as sodium to sulphate molar ratio increased with increasing sea-salt contribution at higher wind speeds. During outbreaks of European pollution in the ACE-2 region, the growth factors of the largest particles were reduced, but only slightly. Growth factors at all sizes in both clean and polluted air masses were markedly lower at the Sagres, Portugal site due to more proximate continental influences. The frequency of occurrence of less-hygroscopic particles with a growth factor of ca. 1.15 was greatest during polluted conditions at Sagres. The free tropospheric 50 nm particles were predominately less-hygroscopic, with an intermediate growth factor of 1.4, but more-hygroscopic particles with growth factors of about 1.6 were also frequent. While these particles probably originate from within the marine boundary layer, the less-hygroscopic particles are probably more characteristic of lower free tropospheric air masses. For those occasions when measurements were made at 90% and an intermediate 60% or 70% RH, the growth factor G(RH) of the more-hygroscopic particles could be modelled empirically by a power law expression. For the ubiquitous more-hygroscopic particles, the expressions G(RH)=(1-RH/100)-0.210 for 50 nm Aitken mode particles and G(RH)=(1-RH/100)-0.233 for 166 nm accumulation mode particles are recommended for clean marine air masses in the north-eastern Atlantic within the range 0

Loading...
Thumbnail Image
Item

Aerosol physical properties and processes in the lower marine boundary layer: A comparison of shipboard sub-micron data from ACE-1 and ACE-2

2016, Bates, Timothy S., Quinn, Patricia K., Covert, David S., Coffman, Derek J., Johnson, James E., Wiedensohler, Alfred

The goals of the IGAC Aerosol Characterization Experiments (ACE) are to determine and understand the properties and controlling processes of the aerosol in a globally representative range of natural and anthropogenically perturbed environments. ACE-1 was conducted in the remote marine atmosphere south of Australia while ACE-2 was conducted in the anthropogenically modified atmosphere of the Eastern North Atlantic. In-situ shipboard measurements from the RV Discoverer(ACE-1) and the RV Professor Vodyanitskiy(ACE-2), combined with calculated back trajectories can be used to define the physical properties of the sub-micron aerosol in marine boundary layer (MBL) air masses from the remote Southern Ocean, Western Europe, the Iberian coast, the Mediterranean and the background Atlantic Ocean. The differences in these aerosol properties, combined with dimethylsulfide, sulfur dioxide and meteorological measurements provide a means to assess processes that affect the aerosol distribution. The background sub-micron aerosol measured over the Atlantic Ocean during ACE-2 was more abundant (number and volume) and appeared to be more aged than that measured over the Southern Ocean during ACE-1. Based on seawater DMS measurements and wind speed, the oceanic source of non-sea-salt sulfur and sea-salt to the background marine atmosphere during ACE-1 and ACE-2 was similar. However, the synoptic meteorological pattern was quite different during ACE-1 and ACE-2. The frequent frontal passages during ACE-1 resulted in the mixing of nucleation mode particles into the marine boundary layer from the free troposphere and relatively short aerosol residence times. In the more stable meteorological setting of ACE-2, a significant nucleation mode aerosol was observed in the MBL only for a half day period associated with a weak frontal system. As a result of the longer MBL aerosol residence times, the average background ACE-2 accumulation mode aerosol had a larger diameter and higher number concentration than during ACE-1. The sub-micron aerosol number size distributions in the air masses that passed over Western Europe, the Mediterranean, and coastal Portugal were distinctly different from each other and the background aerosol. The differences can be attributed to the age of the air mass and the degree of cloud processing.

Loading...
Thumbnail Image
Item

Occurrence of an ultrafine particle mode less than 20 nm in diameter in the marine boundary layer during Arctic summer and autumn

2017, Wiedensohler, Alfred, Covert, David S., Swietlicki, Erik, Aalto, Pasi, Heintzenberg, Jost, Leck, Caroline

The International Arctic Ocean Expedition 1991 (IAOE-91) provided a platform to study the occurrence and size distributions of ultrafine particles in the marine boundary layer (MBL) during Arctic summer and autumn. Measurements of both aerosol physics, and gas/particulate chemistry were taken aboard the Swedish icebreaker Oden. Three separate submicron aerosol modes were found: an ultrafine mode (Dp < 20 nm), the Aitken mode (20 < Dp < 100 nm), and the accumulation mode (Dp > 100 nm). We evaluated correlations between ultrafine particle number concentrations and mean diameter with the entire measured physical, chemical, and meteorological data set. Multivariate statistical methods were then used to make these comparisons. A principal component (PC) analysis indicated that the observed variation in the data could be explained by the influence from several types of air masses. These were characterised by contributions from the open sea or sources from the surrounding continents and islands. A partial least square (PLS) regression of the ultrafine particle concentration was also used. These results implied that the ultrafine particles were produced above or in upper layers of the MBL and mixed downwards. There were also indications that the open sea acted as a source of the precursors for ultrafine particle production. No anti-correlation was found between the ultrafine and accumulation particle number concentrations, thus indicating that the sources were in separate air masses.