Search Results

Now showing 1 - 3 of 3
  • Item
    Hierarchical Sticker and Sticky Chain Dynamics in Self-Healing Butyl Rubber Ionomers
    (Washington, DC : Soc., 2019) Mordvinkin, Anton; Suckow, Marcus; Böhme, Frank; Colby, Ralph H.; Creton, Costantino; Saalwächter, Kay
    We present a detailed comparison of the microscopic dynamics and the macroscopic mechanical behavior of novel butyl rubber ionomers with tunable dynamics of sparse sticky imidazole-based sidegroups that form clusters of about 20 units separated by essentially unperturbed chains. This material platform shows promise for application as self-healing elastomers. Size and thermal stability of the ionic clusters were probed by small-angle X-ray scattering, and the chain and sticker dynamics were studied by a combination of broadband dielectric spectroscopy (BDS) and advanced NMR methods. The results are correlated with the rheological behavior characterized by dynamic-mechanical analysis (DMA). While the NMR-detected chain relaxation and DMA results agree quantitatively and confirm relevant aspects of the sticky-reptation picture on a microscopic level, we stress and explain that apparent master curves are of limited use for such a comparison. The cluster-related relaxation time detected by BDS is much shorter than the elastic chain relaxation time, although the weak conductivity does follow the latter. The systematic trends across the sample series suggest that all relaxations are dominated by a cluster-related activation barrier, but also that the BDS-based cluster relaxation does not seem to be directly associated with the effective sticker lifetime. Nonlinear stress-strain experiments demonstrate a reduction of sticker lifetime on stretching and that the stored stress and the elastic recovery depend on the deformation rate. © 2019 American Chemical Society.
  • Item
    Quantifying Rate-and Temperature-Dependent Molecular Damage in Elastomer Fracture
    (College Park, Md. : APS, 2020) Slootman, Juliette; Waltz, Victoria; Yeh, C. Joshua; Baumann, Christoph; Göstl, Robert; Comtet, Jean; Creton, Costantino
    Elastomers are highly valued soft materials finding many applications in the engineering and biomedical fields for their ability to stretch reversibly to large deformations. Yet their maximum extensibility is limited by the occurrence of fracture, which is currently still poorly understood. Because of a lack of experimental evidence, current physical models of elastomer fracture describe the rate and temperature dependence of the fracture energy as being solely due to viscoelastic friction, with chemical bond scission at the crack tip assumed to remain constant. Here, by coupling new fluorogenic mechanochemistry with quantitative confocal microscopy mapping, we are able to quantitatively detect, with high spatial resolution and sensitivity, the scission of covalent bonds as ordinary elastomers fracture at different strain rates and temperatures. Our measurements reveal that, in simple networks, bond scission, far from being restricted to a constant level near the crack plane, can both be delocalized over up to hundreds of micrometers and increase by a factor of 100, depending on the temperature and stretch rate. These observations, permitted by the high fluorescence and stability of the mechanophore, point to an intricate coupling between strain-rate-dependent viscous dissipation and strain-dependent irreversible network scission. These findings paint an entirely novel picture of fracture in soft materials, where energy dissipated by covalent bond scission accounts for a much larger fraction of the total fracture energy than previously believed. Our results pioneer the sensitive, quantitative, and spatially resolved detection of bond scission to assess material damage in a variety of soft materials and their applications. © 2020 authors. Published by the American Physical Society.
  • Item
    Tuning the Interactions in Multiresponsive Complex Coacervate-Based Underwater Adhesives
    (Basel : Molecular Diversity Preservation International, 2020) Dompé, Marco; Cedano-Serrano, Francisco J.; Vahdati, Mehdi; Sidoli, Ugo; Heckert, Olaf; Synytska, Alla; Hourdet, Dominique; Creton, Costantino; van der Gucht, Jasper; Kodger, Thomas; Kamperman, Marleen
    In this work, we report the systematic investigation of a multiresponsive complex coacervate-based underwater adhesive, obtained by combining polyelectrolyte domains and thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) units. This material exhibits a transition from liquid to solid but, differently from most reactive glues, is completely held together by non-covalent interactions, i.e., electrostatic and hydrophobic. Because the solidification results in a kinetically trapped morphology, the final mechanical properties strongly depend on the preparation conditions and on the surrounding environment. A systematic study is performed to assess the effect of ionic strength and of PNIPAM content on the thermal, rheological and adhesive properties. This study enables the optimization of polymer composition and environmental conditions for this underwater adhesive system. The best performance with a work of adhesion of 6.5 J/m2 was found for the complex coacervates prepared at high ionic strength (0.75 M NaCl) and at an optimal PNIPAM content around 30% mol/mol. The high ionic strength enables injectability, while the hydrated PNIPAM domains provide additional dissipation, without softening the material so much that it becomes too weak to resist detaching stress. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.