Search Results

Now showing 1 - 3 of 3
  • Item
    Trajectories of the Earth System in the Anthropocene
    (Washington, DC : NAS, 2018) Steffen, Will; Rockström, Johan; Richardson, Katherine; Lenton, Timothy M.; Folke, Carl; Liverman, Diana; Summerhayes, Colin P.; Barnosky, Anthony D.; Cornell, Sarah E.; Crucifix, Michel; Donges, Jonathan F.; Fetzer, Ingo; Lade, Steven J.; Scheffer, Marten; Winkelmann, Ricarda; Schellnhuber, Hans Joachim
    We explore the risk that self-reinforcing feedbacks could push the Earth System toward a planetary threshold that, if crossed, could prevent stabilization of the climate at intermediate temperature rises and cause continued warming on a “Hothouse Earth” pathway even as human emissions are reduced. Crossing the threshold would lead to a much higher global average temperature than any interglacial in the past 1.2 million years and to sea levels significantly higher than at any time in the Holocene. We examine the evidence that such a threshold might exist and where it might be. If the threshold is crossed, the resulting trajectory would likely cause serious disruptions to ecosystems, society, and economies. Collective human action is required to steer the Earth System away from a potential threshold and stabilize it in a habitable interglacial-like state. Such action entails stewardship of the entire Earth System—biosphere, climate, and societies—and could include decarbonization of the global economy, enhancement of biosphere carbon sinks, behavioral changes, technological innovations, new governance arrangements, and transformed social values.
  • Item
    SURFER v2.0: a flexible and simple model linking anthropogenic CO2 emissions and solar radiation modification to ocean acidification and sea level rise
    (Katlenburg-Lindau : Copernicus, 2022) Martínez Montero, Marina; Crucifix, Michel; Couplet, Victor; Brede, Nuria; Botta, Nicola
    We present SURFER, a novel reduced model for estimating the impact of CO2 emissions and solar radiation modification options on sea level rise and ocean acidification over timescales of several thousands of years. SURFER has been designed for the analysis of CO2 emission and solar radiation modification policies, for supporting the computation of optimal (CO2 emission and solar radiation modification) policies and for the study of commitment and responsibility under uncertainty. The model is based on a combination of conservation laws for the masses of atmospheric and oceanic carbon and for the oceanic temperature anomalies, and of ad-hoc parameterisations for the different sea level rise contributors: ice sheets, glaciers and ocean thermal expansion. It consists of 9 loosely coupled ordinary differential equations, is understandable, fast and easy to modify and calibrate. It reproduces the results of more sophisticated, high-dimensional earth system models on timescales up to millennia.
  • Item
    Responsibility Under Uncertainty: Which Climate Decisions Matter Most?
    (Amsterdam : Baltzer Science Publ., 2023) Botta, Nicola; Brede, Nuria; Crucifix, Michel; Ionescu, Cezar; Jansson, Patrik; Li, Zheng; Martínez, Marina; Richter, Tim
    We propose a new method for estimating how much decisions under monadic uncertainty matter. The method is generic and suitable for measuring responsibility in finite horizon sequential decision processes. It fulfills “fairness” requirements and three natural conditions for responsibility measures: agency, avoidance and causal relevance. We apply the method to study how much decisions matter in a stylized greenhouse gas emissions process in which a decision maker repeatedly faces two options: start a “green” transition to a decarbonized society or further delay such a transition. We account for the fact that climate decisions are rarely implemented with certainty and that their consequences on the climate and on the global economy are uncertain. We discover that a “moral” approach towards decision making — doing the right thing even though the probability of success becomes increasingly small — is rational over a wide range of uncertainties.