Search Results

Now showing 1 - 4 of 4
  • Item
    Stealth Effect of Short Polyoxazolines in Graft Copolymers: Minor Changes of Backbone End Group Determine Liver Cell-Type Specificity
    (Washington, DC : ACS Publications, 2021) Muljajew, Irina; Huschke, Sophie; Ramoji, Anuradha; Cseresnyés, Zoltán; Hoeppener, Stephanie; Nischang, Ivo; Foo, Wanling; Popp, Jürgen; Figge, Marc Thilo; Weber, Christine; Bauer, Michael; Schubert, Ulrich S.; Press, Adrian T.
    Dye-loaded micelles of 10 nm diameter formed from amphiphilic graft copolymers composed of a hydrophobic poly(methyl methacrylate) backbone and hydrophilic poly(2-ethyl-2-oxazoline) side chains with a degree of polymerization of 15 were investigated concerning their cellular interaction and uptake in vitro as well as their interaction with local and circulating cells of the reticuloendothelial system in the liver by intravital microscopy. Despite the high molar mass of the individual macromolecules (Mn ≈ 20 kg mol-1), backbone end group modification by attachment of a hydrophilic anionic fluorescent probe strongly affected the in vivo performance. To understand these effects, the end group was additionally modified by the attachment of four methacrylic acid repeating units. Although various micelles appeared similar in dynamic light scattering and cryo-transmission electron microscopy, changes in the micelles were evident from principal component analysis of the Raman spectra. Whereas an efficient stealth effect was found for micelles formed from polymers with anionically charged or thiol end groups, a hydrophobic end group altered the micelles' structure sufficiently to adapt cell-type specificity and stealth properties in the liver. © 2021 The Authors. Published by American Chemical Society.
  • Item
    Flotillin-Dependent Membrane Microdomains Are Required for Functional Phagolysosomes against Fungal Infections
    (Maryland Heights, MO : Cell Press, 2020) Schmidt, Franziska; Thywißen, Andreas; Goldmann, Marie; Cunha, Cristina; Cseresnyés, Zoltán; Schmidt, Hella; Rafiq, Muhammad; Galiani, Silvia; Gräler, Markus H.; Chamilos, Georgios; Lacerda, João; Campos, António, Jr.; Eggeling, Christian; Figge, Marc Thilo; Heinekamp, Thorsten; Filler, Scott G.; Carvalho, Agostinho; Brakhage, Axel A.
    Schmidt el al. show that lipid rafts in phagolysosomal membranes of macrophages depend on flotillins. Lipid rafts are required for assembly of vATPase and NADPH oxidase. Conidia of the human-pathogenic fungus Aspergillus fumigatus dysregulate assembly of flotillin-dependent lipid rafts in the phagolysosomal membrane and can thereby escape phagolysosomal digestion. © 2020 The Author(s)Lipid rafts form signaling platforms on biological membranes with incompletely characterized role in immune response to infection. Here we report that lipid-raft microdomains are essential components of phagolysosomal membranes of macrophages and depend on flotillins. Genetic deletion of flotillins demonstrates that the assembly of both major defense complexes vATPase and NADPH oxidase requires membrane microdomains. Furthermore, we describe a virulence mechanism leading to dysregulation of membrane microdomains by melanized wild-type conidia of the important human-pathogenic fungus Aspergillus fumigatus resulting in reduced phagolysosomal acidification. We show that phagolysosomes with ingested melanized conidia contain a reduced amount of free Ca2+ ions and that inhibition of Ca2+-dependent calmodulin activity led to reduced lipid-raft formation. We identify a single-nucleotide polymorphism in the human FLOT1 gene resulting in heightened susceptibility for invasive aspergillosis in hematopoietic stem cell transplant recipients. Collectively, flotillin-dependent microdomains on the phagolysosomal membrane play an essential role in protective antifungal immunity. © 2020 The Author(s)
  • Item
    Targeted delivery of a phosphoinositide 3-kinase γ inhibitor to restore organ function in sepsis
    (Heidelberg : EMBO Press, 2021) Press, Adrian T.; Babic, Petra; Hoffmann, Bianca; Müller, Tina; Foo, Wanling; Hauswald, Walter; Benecke, Jovana; Beretta, Martina; Cseresnyés, Zoltán; Hoeppener, Stephanie; Nischang, Ivo; Coldewey, Sina M.; Gräler, Markus H.; Bauer, Reinhard; Gonnert, Falk; Gaßler, Nikolaus; Wetzker, Reinhard; Figge, Marc Thilo; Schubert, Ulrich S.; Bauer, Michael
    Jaundice, the clinical hallmark of infection-associated liver dysfunction, reflects altered membrane organization of the canalicular pole of hepatocytes and portends poor outcomes. Mice lacking phosphoinositide 3-kinase-γ (PI3Kγ) are protected against membrane disintegration and hepatic excretory dysfunction. However, they exhibit a severe immune defect that hinders neutrophil recruitment to sites of infection. To exploit the therapeutic potential of PI3Kγ inhibition in sepsis, a targeted approach to deliver drugs to hepatic parenchymal cells without compromising other cells, in particular immune cells, seems warranted. Here, we demonstrate that nanocarriers functionalized through DY-635, a fluorescent polymethine dye, and a ligand of organic anion transporters can selectively deliver therapeutics to hepatic parenchymal cells. Applying this strategy to a murine model of sepsis, we observed the PI3Kγ-dependent restoration of biliary canalicular architecture, maintained excretory liver function, and improved survival without impairing host defense mechanisms. This strategy carries the potential to expand targeted nanomedicines to disease entities with systemic inflammation and concomitantly impaired barrier functionality.
  • Item
    Tuning the corona-core ratio of polyplex micelles for selective oligonucleotide delivery to hepatocytes or hepatic immune cells
    (Amsterdam [u.a.] : Elsevier Science, 2023) Foo, WanLing; Cseresnyés, Zoltán; Rössel, Carsten; Teng, Yingfeng; Ramoji, Anuradha; Chi, Mingzhe; Hauswald, Walter; Huschke, Sophie; Hoeppener, Stephanie; Popp, Jürgen; Schacher, Felix H.; Sierka, Marek; Figge, Marc Thilo; Press, Adrian T.; Bauer, Michael
    Targeted delivery of oligonucleotides or small molecular drugs to hepatocytes, the liver's parenchymal cells, is challenging without targeting moiety due to the highly efficient mononuclear phagocyte system (MPS) of the liver. The MPS comprises Kupffer cells and specialized sinusoidal endothelial cells, efficiently clearing nanocarriers regardless of their size and surface properties. Physiologically, this non-parenchymal shield protects hepatocytes; however, these local barriers must be overcome for drug delivery. Nanocarrier structural properties strongly influence tissue penetration, in vivo pharmacokinetics, and biodistribution profile. Here we demonstrate the in vivo biodistribution of polyplex micelles formed by polyion complexation of short interfering (si)RNA with modified poly(ethylene glycol)-block-poly(allyl glycidyl ether) (PEG-b-PAGE) diblock copolymer that carries amino moieties in the side chain. The ratio between PEG corona and siRNA complexed PAGE core of polyplex micelles was chemically varied by altering the degree of polymerization of PAGE. Applying Raman-spectroscopy and dynamic in silico modeling on the polyplex micelles, we determined the corona-core ratio (CCR) and visualized the possible micellar structure with varying CCR. The results for this model system reveal that polyplex micelles with higher CCR, i.e., better PEG coverage, exclusively accumulate and thus allow passive cell-type-specific targeting towards hepatocytes, overcoming the macrophage-rich reticuloendothelial barrier of the liver.