Search Results

Now showing 1 - 2 of 2
  • Item
    Macroscopic Self-Evolution of Dynamic Hydrogels to Create Hollow Interiors
    (Weinheim : Wiley-VCH Verlag, 2020) Han, L.; Zheng, Y.; Luo, H.; Feng, J.; Engstler, R.; Xue, L.; Jing, G.; Deng, X.; del Campo, A.; Cui, J.
    A solid-to-hollow evolution in macroscopic structures is challenging in synthetic materials. A fundamentally new strategy is reported for guiding macroscopic, unidirectional shape evolution of materials without compromising the material's integrity. This strategy is based on the creation of a field with a “swelling pole” and a “shrinking pole” to drive polymers to disassemble, migrate, and resettle in the targeted region. This concept is demonstrated using dynamic hydrogels containing anchored acrylic ligands and hydrophobic long alkyl chains. Adding water molecules and ferric ions (Fe3+) to induce a swelling–shrinking field transforms the hydrogels from solid to hollow. The strategy is versatile in the generation of various closed hollow objects (for example, spheres, helix tubes, and cubes with different diameters) for different applications.
  • Item
    Enantiomer-selective magnetization of conglomerates for quantitative chiral separation
    (Berlin : Springer Nature, 2019) Ye, X.; Cui, J.; Li, B.; Li, N.; Wang, R.; Yan, Z.; Tan, J.; Zhang, J.; Wan, X.
    Selective crystallization represents one of the most economical and convenient methods to provide large-scale optically pure chiral compounds. Although significant development has been achieved since Pasteur’s separation of sodium ammonium tartrate in 1848, this method is still fundamentally low efficient (low transformation ratio or high labor). Herein, we describe an enantiomer-selective-magnetization strategy for quantitatively separating the crystals of conglomerates by using a kind of magnetic nano-splitters. These nano-splitters would be selectively wrapped into the S-crystals, leading to the formation of the crystals with different physical properties from that of R-crystals. As a result of efficient separation under magnetic field, high purity chiral compounds (99.2 ee% for R-crystals, 95.0 ee% for S-crystals) can be obtained in a simple one-step crystallization process with a high separation yield (95.1%). Moreover, the nano-splitters show expandability and excellent recyclability. We foresee their great potential in developing chiral separation methods used on different scales. © 2019, The Author(s).