Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Synthesis of Single Atom Based Heterogeneous Platinum Catalysts: High Selectivity and Activity for Hydrosilylation Reactions

2017, Cui, Xinjiang, Junge, Kathrin, Dai, Xingchao, Kreyenschulte, Carsten, Pohl, Marga-Martina, Wohlrab, Sebastian, Shi, Feng, Brückner, Angelika, Beller, Matthias

Catalytic hydrosilylation represents a straightforward and atom-efficient methodology for the creation of C-Si bonds. In general, the application of homogeneous platinum complexes prevails in industry and academia. Herein, we describe the first heterogeneous single atom catalysts (SACs), which are conveniently prepared by decorating alumina nanorods with platinum atoms. The resulting stable material efficiently catalyzes hydrosilylation of industrially relevant olefins with high TON (≈105). A variety of substrates is selectively hydrosilylated including compounds with sensitive reducible and other functional groups (N, B, F, Cl). The single atom based catalyst shows significantly higher activity compared to related Pt nanoparticles.

Loading...
Thumbnail Image
Item

Recent Advances in Catalytic Hydrosilylations: Developments beyond Traditional Platinum Catalysts

2021, de Almeida, Leandro Duarte, Wang, Hongli, Junge, Kathrin, Cui, Xinjiang, Beller, Matthias

Hydrosilylation reactions, which allow the addition of Si−H to C=C/C≡C bonds, are typically catalyzed by homogeneous noble metal catalysts (Pt, Rh, Ir, and Ru). Although excellent activity and selectivity can be obtained, the price, purification, and metal residues of these precious catalysts are problems in the silicone industry. Thus, a strong interest in more sustainable catalysts and for more economic processes exists. In this respect, recently disclosed hydrosilylations using catalysts based on earth-abundant transition metals, for example, Fe, Co, Ni, and Mn, and heterogeneous catalysts (supported nanoparticles and single-atom sites) are noteworthy. This minireview describes the recent advances in this field. © 2020 The Authors. Published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Selective Acceptorless Dehydrogenation of Primary Amines to Imines by Core-Shell Cobalt Nanoparticles

2020, Cui, Xinjiang, Li, Wu, Junge, Kathrin, Fei, Zhaofu, Beller, Matthias, Dyson, Paul J.

Core–shell nanocatalysts are attractive due to their versatility and stability. Here, we describe cobalt nanoparticles encapsulated within graphitic shells prepared via the pyrolysis of a cationic poly-ionic liquid (PIL) with a cobalt(II) chloride anion. The resulting material has a core–shell structure that displays excellent activity and selectivity in the self-dehydrogenation and hetero-dehydrogenation of primary amines to their corresponding imines. Furthermore, the catalyst exhibits excellent activity in the synthesis of secondary imines from substrates with various reducible functional groups (C=C, C≡C and C≡N) and amino acid derivatives. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.