Search Results

Now showing 1 - 2 of 2
  • Item
    Room temperature single-step synthesis of metal decorated boron-rich nanowires via laser ablation
    (Heidelberg : Springer Verlag, 2019) Gonzalez-Martinez, I.G.; Bachmatiuk, A.; Gemming, T.; Cuniberti, G.; Trzebicka, B.; Rummeli, M.H.
    Hybrid nanostructures, such as those with nanoparticles anchored on the surface of nanowires, or decorated nanowires, have a large number of potential and tested applications such as: gas sensing, catalysis, plasmonic waveguides, supercapacitors and more. The downside of these nanostructures is their production. Generally, multi-step synthesis procedures are used, with the nanowires and the nanoparticles typically produced separately and then integrated. The few existent single-step methods are lengthy or necessitate highly dedicated setups. In this paper we report a single-step and rapid (ca. 1 min) laser ablation synthesis method which produces a wide variety of boron-rich decorated nanowires. Furthermore, the method is carried at room temperature. The synthesis process consists on a filamentary jet ejection process driven by pressure gradients generated by the ablation plume on the rims of the irradiation crater. Simultaneously nanoparticles are nucleated and deposited on the filaments thus producing hybrid decorated nanowires.
  • Item
    Magnetoresistive emulsion analyzer
    (London : Nature Publishing Group, 2013) Lin, G.; Baraban, L.; Han, L.; Karnaushenko, D.; Makarov, D.; Cuniberti, G.; Schmidt, O.G.
    We realize a magnetoresistive emulsion analyzer capable of detection, multiparametric analysis and sorting of ferrofluid-containing nanoliter-droplets. The operation of the device in a cytometric mode provides high throughput and quantitative information about the dimensions and magnetic content of the emulsion. Our method offers important complementarity to conventional optical approaches involving ferrofluids, and paves the way to the development of novel compact tools for diagnostics and nanomedicine including drug design and screening.