Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Influences of the 2010 Eyjafjallajökull volcanic plume on air quality in the northern Alpine region

2011, Schäfer, K., Thomas, W., Peters, A., Ries, L., Obleitner, F., Schnelle-Kreis, J., Birmili, W., Diemer, J., Fricke, W., Junkermann, W., Pitz, M., Emeis, S., Forkel, R., Suppan, P., Flentje, H., Gilge, S., Wichmann, H.E., Meinhardt, F., Zimmermann, R., Weinhold, K., Soentgen, J., Münkel, C., Freuer, C., Cyrys, J.

A series of major eruptions of the Eyjafjallajökull volcano in Iceland started on 14 April 2010 and continued until the end of May 2010. The volcanic emissions moved over nearly the whole of Europe and were observed first on 16 April 2010 in Southern Germany with different remote sensing systems from the ground and space. Enhanced PM10 and SO2 concentrations were detected on 17 April at mountain stations (Zugspitze/Schneefernerhaus and Schauinsland) as well as in Innsbruck by in situ measurement devices. On 19 April intensive vertical mixing and advection along with clear-sky conditions facilitated the entrainment of volcanic material down to the ground. The subsequent formation of a stably stratified lower atmosphere with limited mixing near the ground during the evening of 19 April led to an additional enhancement of near-surface particle concentrations. Consequently, on 19 April and 20 April exceedances of the daily threshold value for particulate matter (PM10) were reported at nearly all monitoring stations of the North Alpine foothills as well as at mountain and valley stations in the northern Alps. The chemical analyses of ambient PM10 at monitoring stations of the North Alpine foothills yielded elevated Titanium concentrations on 19/20 April which prove the presence of volcanic plume material. Following this result the PM10 threshold exceedances are also associated with the volcanic plume. The entrainment of the volcanic plume material mainly affected the concentrations of coarse particles (>1 μm) – interpreted as volcanic ash – and ultrafine particles (<100 nm), while the concentrations of accumulation mode aerosol (0.1–1 μm) were not changed significantly. With regard to the occurrence of ultrafine particles, it is concluded that their formation was triggered by high sulphuric acid concentrations which are necessarily generated by the photochemical processes in a plume rich in sulphur dioxide under high solar irradiance. It became evident that during the course of several days, the Eyjafjallajökull volcanic emissions influenced the near-surface atmosphere and thus the ambient air quality. Although the volcanic plume contributed to the overall exposure of the population of the northern Alpine region on two days, only minor effects on the exacerbation of respiratory and cardiovascular symptoms can be expected.

Loading...
Thumbnail Image
Item

Particle number size distributions in urban air before and after volatilisation

2010, Birmili, W., Heinke, K., Pitz, M., Matschullat, J., Wiedensohler, A., Cyrys, J., Wichmann, H.-E., Peters, A.

Aerosol particle number size distributions (size range 0.003–10 μm) in the urban atmosphere of Augsburg (Germany) were examined with respect to the governing anthropogenic sources and meteorological factors. The two-year average particle number concentration between November 2004 and November 2006 was 12 200 cm−3, i.e. similar to previous observations in other European cities. A seasonal analysis yielded twice the total particle number concentrations in winter as compared to summer as consequence of more frequent inversion situations and enhanced particulate emissions. The diurnal variations of particle number were shaped by a remarkable maximum in the morning during the peak traffic hours. After a mid-day decrease along with the onset of vertical mixing, an evening concentration maximum could frequently be observed, suggesting a re-stratification of the urban atmosphere. Overall, the mixed layer height turned out to be the most influential meteorological parameter on the particle size distribution. Its influence was even greater than that of the geographical origin of the prevailing synoptic-scale air mass. Size distributions below 0.8 μm were also measured downstream of a thermodenuder (temperature: 300 °C), allowing to retrieve the volume concentration of non-volatile compounds. The balance of particle number upstream and downstream of the thermodenuder suggests that practically all particles >12 nm contain a non-volatile core while additional nucleation of particles smaller than 6 nm could be observed after the thermodenuder as an interfering artifact of the method. The good correlation between the non-volatile volume concentration and an independent measurement of the aerosol absorption coefficient (R2=0.9) suggests a close correspondence of the refractory and light-absorbing particle fractions. Using the "summation method", an average diameter ratio of particles before and after volatilisation could be determined as a function of particle size. The results indicated that particles >60 nm contain a significantly higher fraction of non-volatile compounds, most likely black carbon, than particles <60 nm. The results are relevant for future health-related studies in that they explore the size distribution and time-dependent behaviour of the refractory component of the urban aerosol over an extended time period.