Search Results

Now showing 1 - 2 of 2
  • Item
    NLPContributions: An Annotation Scheme for Machine Reading of Scholarly Contributions in Natural Language Processing Literature
    (Aachen : RWTH, 2020) D'Souza, Jennifer; Auer, Sören
    We describe an annotation initiative to capture the scholarly contributions in natural language processing (NLP) articles, particularly, for the articles that discuss machine learning (ML) approaches for various information extraction tasks. We develop the annotation task based on a pilot annotation exercise on 50 NLP-ML scholarly articles presenting contributions to five information extraction tasks 1. machine translation, 2. named entity recognition, 3. Question answering, 4. relation classification, and 5. text classification. In this article, we describe the outcomes of this pilot annotation phase. Through the exercise we have obtained an annotation methodology; and found ten core information units that reflect the contribution of the NLP-ML scholarly investigations. The resulting annotation scheme we developed based on these information units is called NLPContributions. The overarching goal of our endeavor is four-fold: 1) to find a systematic set of patterns of subject-predicate-object statements for the semantic structuring of scholarly contributions that are more or less generically applicable for NLP-ML research articles; 2) to apply the discovered patterns in the creation of a larger annotated dataset for training machine readers [18] of research contributions; 3) to ingest the dataset into the Open Research Knowledge Graph (ORKG) infrastructure as a showcase for creating user-friendly state-of-the-art overviews; 4) to integrate the machine readers into the ORKG to assist users in the manual curation of their respective article contributions. We envision that the NLPContributions methodology engenders a wider discussion on the topic toward its further refinement and development. Our pilot annotated dataset of 50 NLP-ML scholarly articles according to the NLPContributions scheme is openly available to the research community at https://doi.org/10.25835/0019761.
  • Item
    The STEM-ECR Dataset: Grounding Scientific Entity References in STEM Scholarly Content to Authoritative Encyclopedic and Lexicographic Sources
    (Paris : European Language Resources Association, 2020) D'Souza, Jennifer; Hoppe, Anett; Brack, Arthur; Jaradeh, Mohamad Yaser; Auer, Sören; Ewerth, Ralph
    We introduce the STEM (Science, Technology, Engineering, and Medicine) Dataset for Scientific Entity Extraction, Classification, and Resolution, version 1.0 (STEM-ECR v1.0). The STEM-ECR v1.0 dataset has been developed to provide a benchmark for the evaluation of scientific entity extraction, classification, and resolution tasks in a domain-independent fashion. It comprises abstracts in 10 STEM disciplines that were found to be the most prolific ones on a major publishing platform. We describe the creation of such a multidisciplinary corpus and highlight the obtained findings in terms of the following features: 1) a generic conceptual formalism for scientific entities in a multidisciplinary scientific context; 2) the feasibility of the domain-independent human annotation of scientific entities under such a generic formalism; 3) a performance benchmark obtainable for automatic extraction of multidisciplinary scientific entities using BERT-based neural models; 4) a delineated 3-step entity resolution procedure for human annotation of the scientific entities via encyclopedic entity linking and lexicographic word sense disambiguation; and 5) human evaluations of Babelfy returned encyclopedic links and lexicographic senses for our entities. Our findings cumulatively indicate that human annotation and automatic learning of multidisciplinary scientific concepts as well as their semantic disambiguation in a wide-ranging setting as STEM is reasonable.