Search Results

Now showing 1 - 2 of 2
  • Item
    An EARLINET early warning system for atmospheric aerosol aviation hazards
    (Katlenburg-Lindau : EGU, 2020) Papagiannopoulos, Nikolaos; D’Amico, Giuseppe; Gialitaki, Anna; Ajtai, Nicolae; Alados-Arboledas, Lucas; Amodeo, Aldo; Amiridis, Vassilis; Baars, Holger; Balis, Dimitris; Binietoglou, Ioannis; Comerón, Adolfo; Dionisi, Davide; Falconieri, Alfredo; Fréville, Patrick; Kampouri, Anna; Mattis, Ina; Mijić, Zoran; Molero, Francisco; Papayannis, Alex; Pappalardo, Gelsomina; Rodríguez-Gómez, Alejandro; Solomos, Stavros; Mona, Lucia
    A stand-alone lidar-based method for detecting airborne hazards for aviation in near real time (NRT) is presented. A polarization lidar allows for the identification of irregular-shaped particles such as volcanic dust and desert dust. The Single Calculus Chain (SCC) of the European Aerosol Research Lidar Network (EARLINET) delivers high-resolution preprocessed data: the calibrated total attenuated backscatter and the calibrated volume linear depolarization ratio time series. From these calibrated lidar signals, the particle backscatter coefficient and the particle depolarization ratio can be derived in temporally high resolution and thus provide the basis of the NRT early warning system (EWS). In particular, an iterative method for the retrieval of the particle backscatter is implemented. This improved capability was designed as a pilot that will produce alerts for imminent threats for aviation. The method is applied to data during two diverse aerosol scenarios: first, a record breaking desert dust intrusion in March 2018 over Finokalia, Greece, and, second, an intrusion of volcanic particles originating from Mount Etna, Italy, in June 2019 over Antikythera, Greece. Additionally, a devoted observational period including several EARLINET lidar systems demonstrates the network's preparedness to offer insight into natural hazards that affect the aviation sector. © 2020 Author(s).
  • Item
    First Ever Observations of Mineral Dust in Wintertime over Warsaw, Poland
    (Basel : MDPI, 2022) Szczepanik, Dominika M.; Ortiz-Amezcua, Pablo; Heese, Birgit; D’Amico, Giuseppe; Stachlewska, Iwona S.
    The long-range transport of desert dust over the area of the temperate climate zone is associated with the influx of hot air masses due to the location of the sources of this aerosol in the tropical climate zone. Between 24–26 February 2021, such an aerosol outbreak took place and reached Central Europe. The mean temperature of +11.7 °C was recorded during the event. A comparison of this value to the 20-year (2000–2020) average February temperature for Warsaw (−0.2 °C) indicates the uniqueness of the meteorological conditions. It was the first wintertime inflow of Saharan dust over Warsaw, the presence of which was confirmed by lidar and sun-photometer measurements. The properties of the desert dust layers were obtained; the mean values of the particle depolarization for the fully developed mineral dust layer were 13 ± 3% and 22 ± 4% for 355 and 532 nm, respectively. The aerosol optical thickness was high with average values >0.36 for all wavelengths smaller than 500 nm. The three-modal, aerosol size distribution was dominated by coarse-mode particles, with a visible contribution of accumulation-mode particles. It suggests the possible presence of other aerosol types.