Search Results

Now showing 1 - 4 of 4
  • Item
    Sentence, Phrase, and Triple Annotations to Build a Knowledge Graph of Natural Language Processing Contributions - A Trial Dataset
    (Beijing : National Science Library, Chinese Academy of Sciences, 2021) D’Souza, Jennifer; Auer, Sören
    This work aims to normalize the NlpContributions scheme (henceforward, NlpContributionGraph) to structure, directly from article sentences, the contributions information in Natural Language Processing (NLP) scholarly articles via a two-stage annotation methodology: 1) pilot stage—to define the scheme (described in prior work); and 2) adjudication stage—to normalize the graphing model (the focus of this paper). We re-annotate, a second time, the contributions-pertinent information across 50 prior-annotated NLP scholarly articles in terms of a data pipeline comprising: contribution-centered sentences, phrases, and triple statements. To this end, specifically, care was taken in the adjudication annotation stage to reduce annotation noise while formulating the guidelines for our proposed novel NLP contributions structuring and graphing scheme. The application of NlpContributionGraph on the 50 articles resulted finally in a dataset of 900 contribution-focused sentences, 4,702 contribution-information-centered phrases, and 2,980 surface-structured triples. The intra-annotation agreement between the first and second stages, in terms of F1-score, was 67.92% for sentences, 41.82% for phrases, and 22.31% for triple statements indicating that with increased granularity of the information, the annotation decision variance is greater. NlpContributionGraph has limited scope for structuring scholarly contributions compared with STEM (Science, Technology, Engineering, and Medicine) scholarly knowledge at large. Further, the annotation scheme in this work is designed by only an intra-annotator consensus—a single annotator first annotated the data to propose the initial scheme, following which, the same annotator reannotated the data to normalize the annotations in an adjudication stage. However, the expected goal of this work is to achieve a standardized retrospective model of capturing NLP contributions from scholarly articles. This would entail a larger initiative of enlisting multiple annotators to accommodate different worldviews into a “single” set of structures and relationships as the final scheme. Given that the initial scheme is first proposed and the complexity of the annotation task in the realistic timeframe, our intra-annotation procedure is well-suited. Nevertheless, the model proposed in this work is presently limited since it does not incorporate multiple annotator worldviews. This is planned as future work to produce a robust model. We demonstrate NlpContributionGraph data integrated into the Open Research Knowledge Graph (ORKG), a next-generation KG-based digital library with intelligent computations enabled over structured scholarly knowledge, as a viable aid to assist researchers in their day-to-day tasks. NlpContributionGraph is a novel scheme to annotate research contributions from NLP articles and integrate them in a knowledge graph, which to the best of our knowledge does not exist in the community. Furthermore, our quantitative evaluations over the two-stage annotation tasks offer insights into task difficulty.
  • Item
    Ranking facts for explaining answers to elementary science questions
    (Cambridge : Cambridge University Press, 2023) D’Souza, Jennifer; Mulang, Isaiah Onando; Auer, Sören
    In multiple-choice exams, students select one answer from among typically four choices and can explain why they made that particular choice. Students are good at understanding natural language questions and based on their domain knowledge can easily infer the question's answer by “connecting the dots” across various pertinent facts. Considering automated reasoning for elementary science question answering, we address the novel task of generating explanations for answers from human-authored facts. For this, we examine the practically scalable framework of feature-rich support vector machines leveraging domain-targeted, hand-crafted features. Explanations are created from a human-annotated set of nearly 5000 candidate facts in the WorldTree corpus. Our aim is to obtain better matches for valid facts of an explanation for the correct answer of a question over the available fact candidates. To this end, our features offer a comprehensive linguistic and semantic unification paradigm. The machine learning problem is the preference ordering of facts, for which we test pointwise regression versus pairwise learning-to-rank. Our contributions, originating from comprehensive evaluations against nine existing systems, are (1) a case study in which two preference ordering approaches are systematically compared, and where the pointwise approach is shown to outperform the pairwise approach, thus adding to the existing survey of observations on this topic; (2) since our system outperforms a highly-effective TF-IDF-based IR technique by 3.5 and 4.9 points on the development and test sets, respectively, it demonstrates some of the further task improvement possibilities (e.g., in terms of an efficient learning algorithm, semantic features) on this task; (3) it is a practically competent approach that can outperform some variants of BERT-based reranking models; and (4) the human-engineered features make it an interpretable machine learning model for the task.
  • Item
    Clustering Semantic Predicates in the Open Research Knowledge Graph
    (Heidelberg : Springer, 2022) Arab Oghli, Omar; D’Souza, Jennifer; Auer, Sören
    When semantically describing knowledge graphs (KGs), users have to make a critical choice of a vocabulary (i.e. predicates and resources). The success of KG building is determined by the convergence of shared vocabularies so that meaning can be established. The typical lifecycle for a new KG construction can be defined as follows: nascent phases of graph construction experience terminology divergence, while later phases of graph construction experience terminology convergence and reuse. In this paper, we describe our approach tailoring two AI-based clustering algorithms for recommending predicates (in RDF statements) about resources in the Open Research Knowledge Graph (ORKG) https://orkg.org/. Such a service to recommend existing predicates to semantify new incoming data of scholarly publications is of paramount importance for fostering terminology convergence in the ORKG. Our experiments show very promising results: a high precision with relatively high recall in linear runtime performance. Furthermore, this work offers novel insights into the predicate groups that automatically accrue loosely as generic semantification patterns for semantification of scholarly knowledge spanning 44 research fields.
  • Item
    Easy Semantification of Bioassays
    (Heidelberg : Springer, 2022) Anteghini, Marco; D’Souza, Jennifer; dos Santos, Vitor A. P. Martins; Auer, Sören
    Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. We propose a solution for automatically semantifying biological assays. Our solution contrasts the problem of automated semantification as labeling versus clustering where the two methods are on opposite ends of the method complexity spectrum. Characteristically modeling our problem, we find the clustering solution significantly outperforms a deep neural network state-of-the-art labeling approach. This novel contribution is based on two factors: 1) a learning objective closely modeled after the data outperforms an alternative approach with sophisticated semantic modeling; 2) automatically semantifying biological assays achieves a high performance F1 of nearly 83%, which to our knowledge is the first reported standardized evaluation of the task offering a strong benchmark model.