Search Results

Now showing 1 - 4 of 4
  • Item
    Implications of climate change mitigation strategies on international bioenergy trade
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Daioglou, Vassilis; Muratori, Matteo; Lamers, Patrick; Fujimori, Shinichiro; Kitous, Alban; Köberle, Alexandre C.; Bauer, Nico; Junginger, Martin; Kato, Etsushi; Leblanc, Florian; Mima, Silvana; Wise, Marshal; van Vuuren, Detlef P.
    Most climate change mitigation scenarios rely on increased use of bioenergy to decarbonize the energy system. Here we use results from the 33rd Energy Modeling Forum study (EMF-33) to investigate projected international bioenergy trade for different integrated assessment models across several climate change mitigation scenarios. Results show that in scenarios with no climate policy, international bioenergy trade is likely to increase over time, and becomes even more important when climate targets are set. More stringent climate targets, however, do not necessarily imply greater bioenergy trade compared to weaker targets, as final energy demand may be reduced. However, the scaling up of bioenergy trade happens sooner and at a faster rate with increasing climate target stringency. Across models, for a scenario likely to achieve a 2 °C target, 10–45 EJ/year out of a total global bioenergy consumption of 72–214 EJ/year are expected to be traded across nine world regions by 2050. While this projection is greater than the present trade volumes of coal or natural gas, it remains below the present trade of crude oil. This growth in bioenergy trade largely replaces the trade in fossil fuels (especially oil) which is projected to decrease significantly over the twenty-first century. As climate change mitigation scenarios often show diversified energy systems, in which numerous world regions can act as bioenergy suppliers, the projections do not necessarily lead to energy security concerns. Nonetheless, rapid growth in the trade of bioenergy is projected in strict climate mitigation scenarios, raising questions about infrastructure, logistics, financing options, and global standards for bioenergy production and trade. © 2020, The Author(s).
  • Item
    Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm
    (Amsterdam : Elsevier, 2016) van Vuuren, Detlef P.; Stehfest, Elke; Gernaat, David E.H.J.; Doelman, Jonathan C.; van den Berg, Maarten; Harmsen, Mathijs; de Boer, Harmen Sytze; Bouwman, Lex F.; Daioglou, Vassilis; Edelenbosch, Oreane Y.; Girod, Bastien; Kram, Tom; Lassaletta, Luis; Lucas, Paul L.; van Meijl, Hans; Müller, Christoph; van Ruijven, Bas J.; van der Sluis, Sietske; Tabeau, Andrzej
    This paper describes the possible developments in global energy use and production, land use, emissions and climate changes following the SSP1 storyline, a development consistent with the green growth (or sustainable development) paradigm (a more inclusive development respecting environmental boundaries). The results are based on the implementation using the IMAGE 3.0 integrated assessment model and are compared with a) other IMAGE implementations of the SSPs (SSP2 and SSP3) and b) the SSP1 implementation of other integrated assessment models. The results show that a combination of resource efficiency, preferences for sustainable production methods and investment in human development could lead to a strong transition towards a more renewable energy supply, less land use and lower anthropogenic greenhouse gas emissions in 2100 than in 2010, even in the absence of explicit climate policies. At the same time, climate policy would still be needed to reduce emissions further, in order to reduce the projected increase of global mean temperature from 3 °C (SSP1 reference scenario) to 2 or 1.5 °C (in line with current policy targets). The SSP1 storyline could be a basis for further discussions on how climate policy can be combined with achieving other societal goals.
  • Item
    Bioenergy technologies in long-run climate change mitigation: results from the EMF-33 study
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Daioglou, Vassilis; Rose, Steven K.; Bauer, Nico; Kitous, Alban; Muratori, Matteo; Sano, Fuminori; Fujimori, Shinichiro; Gidden, Matthew J.; Kato, Etsushi; Keramidas, Kimon; Klein, David; Leblanc, Florian; Tsutsui, Junichi; Wise, Marshal; van Vuuren, Detlef P.
    Bioenergy is expected to play an important role in long-run climate change mitigation strategies as highlighted by many integrated assessment model (IAM) scenarios. These scenarios, however, also show a very wide range of results, with uncertainty about bioenergy conversion technology deployment and biomass feedstock supply. To date, the underlying differences in model assumptions and parameters for the range of results have not been conveyed. Here we explore the models and results of the 33rd study of the Stanford Energy Modeling Forum to elucidate and explore bioenergy technology specifications and constraints that underlie projected bioenergy outcomes. We first develop and report consistent bioenergy technology characterizations and modeling details. We evaluate the bioenergy technology specifications through a series of analyses—comparison with the literature, model intercomparison, and an assessment of bioenergy technology projected deployments. We find that bioenergy technology coverage and characterization varies substantially across models, spanning different conversion routes, carbon capture and storage opportunities, and technology deployment constraints. Still, the range of technology specification assumptions is largely in line with bottom-up engineering estimates. We then find that variation in bioenergy deployment across models cannot be understood from technology costs alone. Important additional determinants include biomass feedstock costs, the availability and costs of alternative mitigation options in and across end-uses, the availability of carbon dioxide removal possibilities, the speed with which large scale changes in the makeup of energy conversion facilities and integration can take place, and the relative demand for different energy services. © 2020, The Author(s).
  • Item
    Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Hanssen, Steef V.; Daioglou, Vassilis; Steinmann, Zoran J.N.; Frank, Stefan; Popp, Alexander; Brunelle, Thierry; Lauri, Pekka; Hasegawa, Tomoko; Huijbregts, Mark A.J.; Van Vuuren, Detlef P.
    In the twenty-first century, modern bioenergy could become one of the largest sources of energy, partially replacing fossil fuels and contributing to climate change mitigation. Agricultural and forestry biomass residues form an inexpensive bioenergy feedstock with low greenhouse gas (GHG) emissions, if harvested sustainably. We analysed quantities of biomass residues supplied for energy and their sensitivities in harmonised bioenergy demand scenarios across eight integrated assessment models (IAMs) and compared them with literature-estimated residue availability. IAM results vary substantially, at both global and regional scales, but suggest that residues could meet 7–50% of bioenergy demand towards 2050, and 2–30% towards 2100, in a scenario with 300 EJ/year of exogenous bioenergy demand towards 2100. When considering mean literature-estimated availability, residues could provide around 55 EJ/year by 2050. Inter-model differences primarily arise from model structure, assumptions, and the representation of agriculture and forestry. Despite these differences, drivers of residues supplied and underlying cost dynamics are largely similar across models. Higher bioenergy demand or biomass prices increase the quantity of residues supplied for energy, though their effects level off as residues become depleted. GHG emission pricing and land protection can increase the costs of using land for lignocellulosic bioenergy crop cultivation, which increases residue use at the expense of lignocellulosic bioenergy crops. In most IAMs and scenarios, supplied residues in 2050 are within literature-estimated residue availability, but outliers and sustainability concerns warrant further exploration. We conclude that residues can cost-competitively play an important role in the twenty-first century bioenergy supply, though uncertainties remain concerning (regional) forestry and agricultural production and resulting residue supply potentials. © 2019, The Author(s).