Search Results

Now showing 1 - 2 of 2
  • Item
    Single-crystalline FeCo nanoparticle-filled carbon nanotubes: Synthesis, structural characterization and magnetic properties
    (Frankfurt am Main : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2018) Ghunaim, R.; Scholz, M.; Damm, C.; Rellinghaus, B.; Klingeler, R.; Büchner, B.; Mertig, M.; Hampel, S.
    In the present work, we demonstrate different synthesis procedures for filling carbon nanotubes (CNTs) with equimolar binary nanoparticles of the type Fe-Co. The CNTs act as templates for the encapsulation of magnetic nanoparticles and provide a protective shield against oxidation as well as prevent nanoparticle agglomeration. By variation of the reaction parameters, we were able to tailor the sample purity, degree of filling, the composition and size of the filling particles, and therefore, the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe-Co-filled CNTs show significant enhancement in the coercive field as compared to the corresponding bulk material, which make them excellent candidates for several applications such as magnetic storage devices.
  • Item
    Fe1-xNix alloy nanoparticles encapsulated inside carbon nanotubes: Controlled synthesis, structure and magnetic properties
    (Basel : MDPI AG, 2018) Ghunaim, R.; Damm, C.; Wolf, D.; Lubk, A.; Büchner, B.; Mertig, M.; Hampel, S.
    In the present work, different synthesis procedures have been demonstrated to fill carbon nanotubes (CNTs) with Fe1-xNix alloy nanoparticles (x = 0.33, 0.5). CNTs act as templates for the encapsulation of magnetic nanoparticles, and provide a protective shield against oxidation as well as prevent nanoparticles agglomeration. By variation of the reaction parameters, the purity of the samples, degree of filling, the composition and size of filling nanoparticles have been tailored and therefore the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Bright-field (BF) TEM tomography, X-ray powder diffraction, superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe1-x Nix-filled CNTs show a huge enhancement in the coercive fields compared to the corresponding bulk materials, which make them excellent candidates for several applications such as magnetic storage devices.