Search Results

Now showing 1 - 3 of 3
  • Item
    Building Hierarchical Martensite
    (Weinheim : Wiley-VCH, 2020) Schwabe, Stefan; Niemann, Robert; Backen, Anja; Wolf, Daniel; Damm, Christine; Walter, Tina; Seiner, Hanuš; Heczko, Oleg; Nielsch, Kornelius; Fähler, Sebastian
    Martensitic materials show a complex, hierarchical microstructure containing structural domains separated by various types of twin boundaries. Several concepts exist to describe this microstructure on each length scale, however, there is no comprehensive approach bridging the whole range from the nano- up to the macroscopic scale. Here, it is described for a Ni-Mn-based Heusler alloy how this hierarchical microstructure is built from scratch with just one key parameter: the tetragonal distortion of the basic building block at the atomic level. Based on this initial block, five successive levels of nested building blocks are introduced. At each level, a larger building block is formed by twinning the preceding one to minimize the relevant energy contributions locally. This naturally explains the coexistence of different types of twin boundaries. The scale-bridging approach of nested building blocks is compared with experiments in real and reciprocal space. The approach of nested building blocks is versatile as it can be applied to the broad class of functional materials exhibiting diffusionless transformations. © 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Increasing the Diversity and Understanding of Semiconductor Nanoplatelets by Colloidal Atomic Layer Deposition
    (Weinheim : Wiley-VCH, 2020) Reichhelm, Annett; Hübner, René; Damm, Christine; Nielsch, Kornelius; Eychmüller, Alexander
    Nanoplatelets (NPLs) are a remarkable class of quantum confined materials with size-dependent optical properties, which are determined by the defined thickness of the crystalline platelets. To increase the variety of species, the colloidal atomic layer deposition method is used for the preparation of increasingly thicker CdSe NPLs. By growing further crystalline layers onto the surfaces of 4 and 5 monolayers (MLs) thick NPLs, species from 6 to 13 MLs are achieved. While increasing the thickness, the heavy-hole absorption peak shifts from 513 to 652 nm, leading to a variety of NPLs for applications and further investigations. The thickness and number of MLs of the platelet species are determined by high-resolution transmission electron microscopy (HRTEM) measurements, allowing the interpretation of several contradictions present in the NPL literature. In recent years, different assumptions are published, leading to a lack of clarity in the fundamentals of this field. Regarding the ongoing scientific interest in NPLs, there is a certain need for clarification, which is provided in this study. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Signatures of a Charge Density Wave Phase and the Chiral Anomaly in the Fermionic Material Cobalt Monosilicide CoSi
    (Weinheim : Wiley-VCH Verlag GmbH & Co. KG, 2020) Schnatmann, Lauritz; Geishendorf, Kevin; Lammel, Michaela; Damm, Christine; Novikov, Sergey; Thomas, Andy; Burkov, Alexander; Reith, Heiko; Nielsch, Kornelius; Schierning, Gabi
    Materials with topological electronic states have emerged as one of the most exciting discoveries of condensed quantum matter, hosting quasiparticles with extremely low effective mass and high mobility. Weyl materials contain such topological states in the bulk and additionally have a non-trivial chiral charge. However, despite known quantum effects caused by these chiral states, the interplay between chiral states, and a charge density wave phase, an ordering of the electrons to a correlated phase is not experimentally explored. Indications for the formation of a charge density wave phase in the Weyl material cobalt monosilicide CoSi are observed. Furthermore, the typical signatures of the charge density wave phase together with typical signatures of Weyl fermions in magnetic field dependent electrical transport characterization are investigated. The charge density wave and the chiral contribution to the electrical magneto-transport are separated as well as a suppression of the charge density wave phase is observed in magnetic fields. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.