Search Results

Now showing 1 - 2 of 2
  • Item
    On the Reactivity of Phosphaalumenes towards C−C Multiple Bonds
    (Weinheim : Wiley-VCH, 2023) Nees, Samuel; Wellnitz, Tim; Dankert, Fabian; Härterich, Marcel; Dotzauer, Simon; Feldt, Milica; Braunschweig, Holger; Hering‐Junghans, Christian
    Heterocycles containing group 13 and 15 elements such as borazines are an integral part of organic, biomedical and materials chemistry. Surprisingly, heterocycles containing P and Al are rare. We have now utilized phosphaalumenes in reactions with alkynes, alkenes and conjugated double bond systems. With sterically demanding alkynes 1,2-phosphaalumetes were afforded, whereas the reaction with HCCH or HCCSiMe3 gave 1,4-phosphaaluminabarrelenes. Using styrene saturated 1,2-phosphaalumates were formed, which reacted further with additional styrene to give different regio-isomers of 1,4-aluminaphosphorinanes. Using ethylene, a 1,4-aluminaphosphorinane is obtained, while with 1,3-butadiene a bicyclic system containing an aluminacyclopentane and a phosphirane unit was synthesized. The experimental work is supported by theoretical studies to shed light on the mechanism governing the formation of these heterocycles.
  • Item
    Siloxane Coordination Revisited: Si−O Bond Character, Reactivity and Magnificent Molecular Shapes
    (Weinheim : Wiley-VCH, 2021) Dankert, Fabian; Hänisch, Carsten von
    Siloxanes have evolved into a multi-million dollar business due to their manifold of commercial and industrial applications. As siloxanes have high hydrophobicity, low basicity, high flexibility and also high chemical inertness in common, their chemistry differs significantly from that of organic ethers. The discovery of organic crown ethers, for instance, is commonly accepted as the birth of synthetic host-guest chemistry. Regarding the chemical properties of siloxanes, cyclic siloxanes which formally resemble silicon analogues of crown ethers, have received considerably less interest in terms of their host-guest chemistry. Hence, only little is known about siloxane coordination chemistry in the chemical community and the number of published works in this field has been very low till lately. In the last few years, the field has significantly advanced and elegant methods were established to enable the Si−O−Si unit for coordination. This review therefore summarizes the recent developments in the field, recapitulates the historical aspects of siloxane coordination chemistry and describes the specific Si−O bond character with regard to different siloxane linkages. Implications on Si−O bond activation are included and the limits of siloxane coordination are redefined.