Search Results

Now showing 1 - 3 of 3
  • Item
    Fiber-based SORS-SERDS system and chemometrics for the diagnostics and therapy monitoring of psoriasis inflammatory disease in vivo
    (Washington, DC : Optica, 2021-1-28) Schleusener, Johannes; Guo, Shuxia; Darvin, Maxim E.; Thiede, Gisela; Chernavskaia, Olga; Knorr, Florian; Lademann, Jürgen; Popp, Jürgen; Bocklitz, Thomas W.
    Psoriasis is considered a widespread dermatological disease that can strongly affect the quality of life. Currently, the treatment is continued until the skin surface appears clinically healed. However, lesions appearing normal may contain modifications in deeper layers. To terminate the treatment too early can highly increase the risk of relapses. Therefore, techniques are needed for a better knowledge of the treatment process, especially to detect the lesion modifications in deeper layers. In this study, we developed a fiber-based SORS-SERDS system in combination with machine learning algorithms to non-invasively determine the treatment efficiency of psoriasis. The system was designed to acquire Raman spectra from three different depths into the skin, which provide rich information about the skin modifications in deeper layers. This way, it is expected to prevent the occurrence of relapses in case of a too short treatment. The method was verified with a study of 24 patients upon their two visits: the data is acquired at the beginning of a standard treatment (visit 1) and four months afterwards (visit 2). A mean sensitivity of ≥85% was achieved to distinguish psoriasis from normal skin at visit 1. At visit 2, where the patients were healed according to the clinical appearance, the mean sensitivity was ≈65%.
  • Item
    Ultrafast imaging Raman spectroscopy of large-area samples without stepwise scanning
    (Göttingen : Copernicus Publ., 2016) Schmälzlin, Elmar; Moralejo, Benito; Bodenmüller, Daniel; Darvin, Maxim E.; Thiede, Gisela; Roth, Martin M.
    Step-by-step, time-consuming scanning of the sample is still the state-of-the-art in imaging Raman spectroscopy. Even for a few 100 image points the measurement time may add up to minutes or hours. A radical decrease in measurement time can be achieved by applying multiplex spectrographs coupled to imaging fiber bundles that are successfully used in astronomy. For optimal use of the scarce and expensive observation time at astronomical observatories, special high-performance spectrograph systems were developed. They are designed for recording thousands of spatially resolved spectra of a two-dimensional image field within one single exposure. Transferring this technology to imaging Raman spectroscopy allows a considerably faster acquisition of chemical maps. Currently, an imaging field of up to 1 cm2 can be investigated. For porcine skin the required measurement time is less than 1 min. For this reason, this technique is of particular interest for medical diagnostics, e.g., the identification of potentially cancerous abnormalities of skin tissue.
  • Item
    Human glabrous skin contains crystallized urea dendriform structures in the stratum corneum which affect the hydration levels
    (Oxford : Wiley-Blackwell, 2023) Infante, Victor Hugo Pacagnelli; Bennewitz, Roland; Kröger, Marius; Meinke, Martina C.; Darvin, Maxim E.
    Glabrous skin is hair-free skin with a high density of sweat glands, which is found on the palms, and soles of mammalians, covered with a thick stratum corneum. Dry hands are often an occupational problem which deserves attention from dermatologists. Urea is found in the skin as a component of the natural moisturizing factor and of sweat. We report the discovery of dendrimer structures of crystalized urea in the stratum corneum of palmar glabrous skin using laser scanning microscopy. The chemical and structural nature of the urea crystallites was investigated in vivo by non-invasive techniques. The relation of crystallization to skin hydration was explored. We analysed the index finger, small finger and tenar palmar area of 18 study participants using non-invasive optical methods, such as laser scanning microscopy, Raman microspectroscopy and two-photon tomography. Skin hydration was measured using corneometry. Crystalline urea structures were found in the stratum corneum of about two-thirds of the participants. Participants with a higher density of crystallized urea structures exhibited a lower skin hydration. The chemical nature and the crystalline structure of the urea were confirmed by Raman microspectroscopy and by second harmonic generated signals in two-photon tomography. The presence of urea dendrimer crystals in the glabrous skin seems to reduce the water binding capacity leading to dry hands. These findings highlight a new direction in understanding the mechanisms leading to dry hands and open opportunities for the development of better moisturizers and hand disinfection products and for diagnostic of dry skin.