Search Results

Now showing 1 - 10 of 12
  • Item
    Devulcanization of Waste Rubber and Generation of Active Sites for Silica Reinforcement
    (Washington, DC : ACS Publications, 2019) Ghorai, Soumyajit; Mondal, Dipankar; Hait, Sakrit; Ghosh, Anik Kumar; Wiessner, Sven; Das, Amit; De, Debapriya
    Each year, hundreds of millions of tires are produced and ultimately disposed into nature. To address this serious environmental issue, devulcanization could be one of the sustainable solutions that still remains as one of the biggest challenges across the globe. In this work, sulfur-vulcanized natural rubber (NR) is mechanochemically devulcanized utilizing a silane-based tetrasulfide as a devulcanizing agent, and subsequently, silica (SiO2)-based rubber composites are prepared. This method not only breaks the sulfur–sulfur cross-links but also produces reactive poly(isoprene) chains to interact with silica. The silica natural rubber composites are prepared by replacing 30% fresh NR by devulcanized NR with varying contents of silica. The composites exhibit excellent mechanical properties, tear strength, abrasion resistance, and dynamic mechanical properties as compared with the fresh natural rubber silica composites. The tensile strength of devulcanized rubber-based silica composites is ∼20 MPa, and the maximum elongation strain is ∼921%. The devulcanized composites are studied in detail by chemical, mechanical, and morphological analyses. Thus, the value added by the devulcanized rubber could attract the attention of recycling community for its sustainable applications.
  • Item
    Temperature Scanning Stress Relaxation of an Autonomous Self-Healing Elastomer Containing Non-Covalent Reversible Network Junctions
    (Basel : MDPI, 2018-01-19) Das, Amit; Sallat, Aladdin; Böhme, Frank; Sarlin, Essi; Vuorinen, Jyrki; Vennemann, Norbert; Heinrich, Gert; Stöckelhuber, Klaus Werner
    In this work, we report about the mechanical relaxation characteristics of an intrinsically self-healable imidazole modified commercial rubber. This kind of self-healing rubber was prepared by melt mixing of 1-butyl imidazole with bromo-butyl rubber (bromine modified isoprene-isobutylene copolymer, BIIR). By this melt mixing process, the reactive allylic bromine of bromo-butyl rubber was converted into imidazole bromide salt. The resulting development of an ionic character to the polymer backbone leads to an ionic association of the groups which ultimately results to the formation of a network structure of the rubber chains. The modified BIIR thus behaves like a robust crosslinked rubber and shows unusual self-healing properties. The non-covalent reversible network has been studied in detail with respect to stress relaxation experiments, scanning electron microscopic and X-ray scattering.
  • Item
    A New Route to Highly Stretchable and Soft Inorganic–Organic Hybrid Elastomers Using Polydimethylsiloxane as Crosslinker of Epoxidized Natural Rubber
    (New York, NY [u.a.] : Wiley InterScience, 2021) Banerjee, Shib Shankar; Banerjee, Susanta; Wießner, Sven; Janke, Andreas; Heinrich, Gert; Das, Amit
    Sulfur or peroxide crosslinking is the most common and conventional method to develop elastomeric materials. A new approach to crosslink epoxidized natural rubber (ENR) by aminopropyl terminated polydimethylsiloxane (AT-PDMS) is described, intending to develop a new kind of hybrid organic–inorganic elastomers. The curing reaction is accelerated by using hydroquinone as a catalyst. The formation of the hybrid structure is evident from the appearance of two glass transition temperatures, at −1 and −120 °C, for the ENR and PDMS phases, respectively. The curing reaction is found to be of first order with respect to amine concentration with the estimated activation energy of ≈62 kJ mol−1. Comparing the mechanical properties to a typical ENR-sulfur system leads to the conclusion that the ENR/AT-PDMS hybrid structure is highly stretchable and soft, as demonstrated by its relatively higher strain at failure (up to ≈630%), and lower hardness and modulus values. The higher stretchability and soft nature of the material are achieved by introducing flexible PDMS chains during the curing process resulting to a hybrid elastomer networks. This kind of soft but robust materials can find several applications in diverse fields, such as soft robotics, flexible, and stretchable electronics.
  • Item
    Friction, abrasion and crack growth behavior of in-situ and ex-situ silica filled rubber composites
    (Basel : MDPI, 2020) Vaikuntam, Sankar Raman; Bhagavatheswaran, Eshwaran Subramani; Xiang, Fei; Wießner, Sven; Heinrich, Gert; Das, Amit; Stöckelhuber, Klaus Werner
    The article focuses on comparing the friction, abrasion, and crack growth behavior of two different kinds of silica-filled tire tread compounds loaded with (a) in-situ generated alkoxide silica and (b) commercial precipitated silica-filled compounds. The rubber matrix consists of solution styrene butadiene rubber polymers (SSBR). The in-situ generated particles are entirely different in filler morphology, i.e., in terms of size and physical structure, when compared to the precipitated silica. However, both types of the silicas were identified as amorphous in nature. Influence of filler morphology and surface modification of silica on the end performances of the rubbers like dynamic friction, abrasion index, and fatigue crack propagation were investigated. Compared to precipitated silica composites, in-situ derived silica composites offer better abrasion behavior and improved crack propagation with and without admixture of silane coupling agents. Silane modification, particle morphology, and crosslink density were identified as further vital parameters influencing the investigated rubber properties. © 2020 by the authors.
  • Item
    Viscoelastic and self-healing behavior of silica filled ionically modified poly(isobutylene-co-isoprene) rubber
    (London : RSC Publishing, 2018) Sallat, Aladdin; Das, Amit; Schaber, Jana; Scheler, Ulrich; Bhagavatheswaran, Eshwaran S.; Stöckelhuber, Klaus W.; Heinrich, Gert; Voit, Brigitte; Böhme, Frank
    Rubber composites were prepared by mixing bromobutyl rubber (BIIR) with silica particles in the presence of 1-butylimidazole. In addition to pristine (precipitated) silica, silanized particles with aliphatic or imidazolium functional groups, respectively, were used as filler. The silanization was carried out either separately or in situ during compounding. The silanized particles were characterized by TGA, 1H-29Si cross polarization (CP)/MAS NMR, and Zeta potential measurements. During compounding, the bromine groups of BIIR were converted with 1-butylimidazole to ionic imidazolium groups which formed a dynamic network by ionic association. Based on DMA temperature and strain sweep measurements as well as cyclic tensile tests and stress-strain measurements it could be concluded that interactions between the ionic groups and interactions with the functional groups of the silica particles strongly influence the mechanical and viscoelastic behavior of the composites. A particularly pronounced reinforcing effect was observed for the composite with pristine silica, which was attributed to acid-base interactions between the silanol and imidazolium groups. In composites with alkyl or imidazolium functionalized silica particles, the interactions between the filler and the rubber matrix form dynamic networks with pronounced self-healing behavior and excellent tensile strength values of up to 19 MPa. This new approach in utilizing filler-matrix interactions in the formation of dynamic networks opens up new avenues in designing new kinds of particle-reinforced self-healing elastomeric materials with high technological relevance.
  • Item
    Morphology and Physico-Mechanical Threshold of α-Cellulose as Filler in an E-SBR Composite
    (Basel : MDPI, 2021) Chowdhury, Soumya Ghosh; Chanda, Jagannath; Ghosh, Sreedip; Pal, Abhijit; Ghosh, Prasenjit; Bhattacharyya, Sanjay Kumar; Mukhopadhyay, Rabindra; Banerjee, Shib Shankar; Das, Amit
    In the current context of green mobility and sustainability, the use of new generation natural fillers, namely, α-cellulose, has gained significant recognition. The presence of hydroxyl groups on α-cellulose has generated immense eagerness to map its potency as filler in an elastomeric composite. In the present work, α-cellulose-emulsion-grade styrene butadiene rubber (E-SBR) composite is prepared by conventional rubber processing method by using variable proportions of α-cellulose (1 to 40 phr) to assess its reinforce ability. Rheological, physical, visco-elastic and dynamic-mechanical behavior have clearly established that 10 phr loading of α-cellulose can be considered as an optimized dosage in terms of performance parameters. Morphological characterization with the aid of scanning electron microscope (SEM) and transmission electron microscopy (TEM) also substantiated that composite with 10 phr loading of α-cellulose has achieved the morphological threshold. With this background, synthetic filler (silica) is substituted by green filler (α-cellulose) in an E-SBR-based composite. Characterization of the compound has clearly established the reinforcement ability of α-cellulose.
  • Item
    Development of Liquid Diene Rubber Based Highly Deformable Interactive Fiber-Elastomer Composites
    (Basel : MDPI, 2022-01-05) Kamble, Vikram G.; Mersch, Johannes; Tahir, Muhammad; Stöckelhuber, Klaus Werner; Das, Amit; Wießner, Sven
    The preparation of intelligent structures for multiple smart applications such as soft-ro-botics, artificial limbs, etc., is a rapidly evolving research topic. In the present work, the preparation of a functional fabric, and its integration into a soft elastomeric matrix to develop an adaptive fiber-elastomer composite structure, is presented. Functional fabric, with the implementation of the shape memory effect, was combined with liquid polybutadiene rubber by means of a low-temperature vulcanization process. A detailed investigation on the crosslinking behavior of liquid polybutadiene rubber was performed to develop a rubber formulation that is capable of crosslinking liquid rubber at 75 °C, a temperature that is much lower than the phase transformation temperature of SMA wires (90–110 °C). By utilizing the unique low-temperature crosslinking protocol for liquid polybutadiene rubber, soft intelligent structures containing functional fabric were developed. The adaptive structures were successfully activated by Joule heating. The deformation behavior of the smart structures was experimentally demonstrated by reaching a 120 mm bending distance at an activation voltage of 8 V without an additional load, whereas 90 mm, 70 mm, 65 mm, 57 mm bending distances were achieved with attached weights of 5 g, 10 g, 20 g, 30 g, respectively.
  • Item
    Poly(acrylonitrile-co-butadiene) as polymeric crosslinking accelerator for sulphur network formation
    (London [u.a.] : Elsevier, 2020) Hait, Sakrit; Valentín, Juan López; Jiménez, Antonio González; Ortega, Pilar Bernal; Ghosh, Anik Kumar; Stöckelhuber, Klaus Werner; Wießner, Sven; Heinrich, Gert; Das, Amit
    The major controlling factors that determine the various mechanical properties of an elastomer system are type of chemical crosslinking and crosslink density of the polymer network. In this study, a catalytic amount of acrylonitrile butadiene copolymer (NBR) was used as a co-accelerator for the curing of polybutadiene (BR) elastomer. After the addition of this copolymer along with other conventional sulphur ingredients in polybutadiene compounds, a clear and distinct effect on the curing and other physical characteristics was noticed. The crosslinking density of BR was increased, as evidenced by rheometric properties, solid-state NMR and swelling studies. The vulcanization kinetics study revealed a substantial lowering of the activation energy of the sulphur crosslinking process when acrylonitrile butadiene copolymer was used in the formulation. The compounds were also prepared in the presence of carbon black and silica, and it was found that in the carbon black filled system the catalytic effect of the NBR was eminent. The effect was not only reflected in the mechanical performance but also the low-temperature crystallization behavior of BR systems was altered. © 2020 The AuthorsMaterials science; Materials chemistry; Crosslinking accelerator; Sulphur network; Solid state NMR; Curing kinetics; Activation energy; Acrylonitrile butadiene; Polybutadiene; Low-temperature; Crystallization. © 2020 The Authors
  • Item
    Ferric Ions Crosslinked Epoxidized Natural Rubber Filled with Carbon Nanotubes and Conductive Carbon Black Hybrid Fillers
    (Basel : MDPI, 2022-10-18) Damampai, Kriengsak; Pichaiyut, Skulrat; Stöckelhuber, Klaus Werner; Das, Amit; Nakason, Charoen
    Natural rubber with 50 mol % epoxidation (ENR-50) was filled with carbon nanotubes (CNTs) and conductive carbon black (CCB) hybrid fillers with various CCB loadings of 2.5, 5.0, 7.0, 10.0 and 15.0 phr, and the compounds were mixed with ferric ion (Fe3+) as a crosslinking agent. The ENRs filled exclusively with CNTs, and CNT–CCB hybrid fillers exhibited typical curing curves at different CCB loadings, i.e., increasing torque with time and thus crosslinked networks. Furthermore, the incorporation of CNT–CCB hybrid fillers and increasing CCB loadings caused an enhancement of tensile properties (modulus and tensile strength) and crosslink densities, which are indicated by the increasing torque difference and the crosslink densities. The crosslink densities are determined by swelling and temperature scanning stress relaxation (TSSR). Increasing CCB loadings also caused a significant improvement in bound rubber content, filler–rubber interactions, thermal resistance, glass transition temperature (Tg) and electrical conductivity. A combination of 7 phr CNT and CCB with loading higher than 2.5 phr gave superior properties to ENR vulcanizates. Furthermore, the secondary CCB filler contributes to the improvement of CNT dispersion in the ENR matrix by networking the CNT capsules and forming CNT–CCB–CNT pathways and thus strong CNT–CCB networks, indicating the improvement in the tensile properties, bound rubber content and dynamic properties of the ENR composites. Moreover, higher electrical conductivity with a comparatively low percolation threshold of the hybrid composites was found as compared to the ENR filled with CNTs without CCB composite. The superior mechanical and other properties are due to the finer dispersion and even distribution of CNT–CCB hybrid fillers in the ENR matrix.
  • Item
    Dry-jet wet spinning of thermally stable lignin-textile grade polyacrylonitrile fibers regenerated from chloride-based ionic liquids compounds
    (Basel : MDPI, 2020) Al Aiti, Muhannad; Das, Amit; Kanerva, Mikko; Järventausta, Maija; Johansson, Petri; Scheffler, Christina; Göbel, Michael; Jehnichen, Dieter; Brünig, Harald; Wulff, Lucas; Boye, Susanne; Arnhold, Kerstin; Kuusipalo, Jurkka; Heinrich, Gert
    In this paper, we report on the use of amorphous lignin, a waste by-product of the paper industry, for the production of high performance carbon fibers (CF) as precursor with improved thermal stability and thermo-mechanical properties. The precursor was prepared by blending of lignin with polyacrylonitrile (PAN), which was previously dissolved in an ionic liquid. The fibers thus produced offered very high thermal stability as compared with the fiber consisting of pure PAN. The molecular compatibility, miscibility, and thermal stability of the system were studied by means of shear rheological measurements. The achieved mechanical properties were found to be related to the temperature-dependent relaxation time (consistence parameter) of the spinning dope and the diffusion kinetics of the ionic liquids from the fibers into the coagulation bath. Furthermore, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical tests (DMA) were utilized to understand in-depth the thermal and the stabilization kinetics of the developed fibers and the impact of lignin on the stabilization process of the fibers. Low molecular weight lignin increased the thermally induced physical shrinkage, suggesting disturbing effects on the semi-crystalline domains of the PAN matrix, and suppressed the chemically induced shrinkage of the fibers. The knowledge gained throughout the present paper allows summarizing a novel avenue to develop lignin-based CF designed with adjusted thermal stability.