Search Results

Now showing 1 - 2 of 2
  • Item
    An Anisoptropic Surface Remeshing Strategy Combining Higher Dimensional Embedding with Radial Basis Functions
    (Amsterdam [u.a.] : Elsevier, 2016) Dassi, Franco; Farrell, Patricio; Si, Hang
    Many applications heavily rely on piecewise triangular meshes to describe complex surface geometries. High-quality meshes significantly improve numerical simulations. In practice, however, one often has to deal with several challenges. Some regions in the initial mesh may be overrefined, others too coarse. Additionally, the triangles may be too thin or not properly oriented. We present a novel mesh adaptation procedure which greatly improves the problematic input mesh and overcomes all of these drawbacks. By coupling surface reconstruction via radial basis functions with the higher dimensional embedding surface remeshing technique, we can automatically generate anisotropic meshes. Moreover, we are not only able to fill or coarsen certain mesh regions but also align the triangles according to the curvature of the reconstructed surface. This yields an acceptable trade-off between computational complexity and accuracy.
  • Item
    Tetrahedral Mesh Improvement Using Moving Mesh Smoothing and Lazy Searching Flips
    (Amsterdam [u.a.] : Elsevier, 2016) Dassi, Franco; Kamenski, Lennard; Si, Hang
    We combine the new moving mesh smoothing, based on the integration of an ordinary differential equation coming from a given functional, with the new lazy flip technique, a reversible edge removal algorithm for local mesh quality improvement. These strategies already provide good mesh improvement on themselves, but their combination achieves astonishing results not reported so far. Provided numerical comparison with some publicly available mesh improving software show that we can obtain final tetrahedral meshes with dihedral angles between 40° and 123°.