Search Results

Now showing 1 - 3 of 3
  • Item
    Tetrahedral Mesh Improvement Using Moving Mesh Smoothing and Lazy Searching Flips
    (Amsterdam [u.a.] : Elsevier, 2016) Dassi, Franco; Kamenski, Lennard; Si, Hang
    We combine the new moving mesh smoothing, based on the integration of an ordinary differential equation coming from a given functional, with the new lazy flip technique, a reversible edge removal algorithm for local mesh quality improvement. These strategies already provide good mesh improvement on themselves, but their combination achieves astonishing results not reported so far. Provided numerical comparison with some publicly available mesh improving software show that we can obtain final tetrahedral meshes with dihedral angles between 40° and 123°.
  • Item
    Anisotropic Finite Element Mesh Adaptation via Higher Dimensional Embedding
    (Amsterdam [u.a.] : Elsevier, 2015) Dassi, Franco; Si, Hang; Perotto, Simona; Streckenbach, Timo
    In this paper we provide a novel anisotropic mesh adaptation technique for adaptive finite element analysis. It is based on the concept of higher dimensional embedding, which was exploited in [1], [2], [3], [4] to obtain an anisotropic curvature adapted mesh that fits a complex surface in R3. In the context of adaptive finite element simulation, the solution (which is an unknown function f : Ω ⊂ d → ) is sought by iteratively modifying a finite element mesh according to a mesh sizing field described via a (discrete) metric tensor field that is typically obtained through an error estimator. We proposed to use a higher dimensional embedding, Φf (x):= (x1, …, xd, s f (x1, …, xd), s ▿ f (x1, …, xd))t, instead of the mesh sizing field for the mesh adaption. This embedding contains both informations of the function f itself and its gradient. An isotropic mesh in this embedded space will correspond to an anisotropic mesh in the actual space, where the mesh elements are stretched and aligned according to the features of the function f. To better capture the anisotropy and gradation of the mesh, it is necessary to balance the contribution of the components in this embedding. We have properly adjusted Φf (x) for adaptive finite element analysis. To better understand and validate the proposed mesh adaptation strategy, we first provide a series of experimental tests for piecewise linear interpolation of known functions. We then applied this approach in an adaptive finite element solution of partial differential equations. Both tests are performed on two-dimensional domains in which adaptive triangular meshes are generated. We compared these results with the ones obtained by the software BAMG – a metric-based adaptive mesh generator. The errors measured in the L2 norm are comparable. Moreover, our meshes captured the anisotropy more accurately than the meshes of BAMG.
  • Item
    An Anisoptropic Surface Remeshing Strategy Combining Higher Dimensional Embedding with Radial Basis Functions
    (Amsterdam [u.a.] : Elsevier, 2016) Dassi, Franco; Farrell, Patricio; Si, Hang
    Many applications heavily rely on piecewise triangular meshes to describe complex surface geometries. High-quality meshes significantly improve numerical simulations. In practice, however, one often has to deal with several challenges. Some regions in the initial mesh may be overrefined, others too coarse. Additionally, the triangles may be too thin or not properly oriented. We present a novel mesh adaptation procedure which greatly improves the problematic input mesh and overcomes all of these drawbacks. By coupling surface reconstruction via radial basis functions with the higher dimensional embedding surface remeshing technique, we can automatically generate anisotropic meshes. Moreover, we are not only able to fill or coarsen certain mesh regions but also align the triangles according to the curvature of the reconstructed surface. This yields an acceptable trade-off between computational complexity and accuracy.