Search Results

Now showing 1 - 2 of 2
  • Item
    Compartmentalized Jet Polymerization as a High-Resolution Process to Continuously Produce Anisometric Microgel Rods with Adjustable Size and Stiffness
    (Weinheim : Wiley-VCH, 2019) Krüger, Andreas J.D.; Bakirman, Onur; Guerzoni, Luis P.B.; Jans, Alexander; Gehlen, David B.; Rommel, Dirk; Haraszti, Tamás; Kuehne, Alexander J.C.; De Laporte, Laura
    In the past decade, anisometric rod-shaped microgels have attracted growing interest in the materials-design and tissue-engineering communities. Rod-shaped microgels exhibit outstanding potential as versatile building blocks for 3D hydrogels, where they introduce macroscopic anisometry, porosity, or functionality for structural guidance in biomaterials. Various fabrication methods have been established to produce such shape-controlled elements. However, continuous high-throughput production of rod-shaped microgels with simultaneous control over stiffness, size, and aspect ratio still presents a major challenge. A novel microfluidic setup is presented for the continuous production of rod-shaped microgels from microfluidic plug flow and jets. This system overcomes the current limitations of established production methods for rod-shaped microgels. Here, an on-chip gelation setup enables fabrication of soft microgel rods with high aspect ratios, tunable stiffness, and diameters significantly smaller than the channel diameter. This is realized by exposing jets of a microgel precursor to a high intensity light source, operated at specific pulse sequences and frequencies to induce ultra-fast photopolymerization, while a change in flow rates or pulse duration enables variation of the aspect ratio. The microgels can assemble into 3D structures and function as support for cell culture and tissue engineering. © 2019 DWI – Leibniz Institute for Interactive Materials. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    An Injectable Hybrid Hydrogel with Oriented Short Fibers Induces Unidirectional Growth of Functional Nerve Cells
    (Weinheim : Wiley-VCH, 2017) Omidinia-Anarkoli, Abdolrahman; Boesveld, Sarah; Tuvshindorj, Urandelger; Rose, Jonas C.; Haraszti, Tamás; De Laporte, Laura
    To regenerate soft aligned tissues in living organisms, low invasive biomaterials are required to create 3D microenvironments with a structural complexity to mimic the tissue's native architecture. Here, a tunable injectable hydrogel is reported, which allows precise engineering of the construct's anisotropy in situ. This material is defined as an Anisogel, representing a new type of tissue regenerative therapy. The Anisogel comprises a soft hydrogel, surrounding magneto-responsive, cell adhesive, short fibers, which orient in situ in the direction of a low external magnetic field, before complete gelation of the matrix. The magnetic field can be removed after gelation of the biocompatible gel precursor, which fixes the aligned fibers and preserves the anisotropic structure of the Anisogel. Fibroblasts and nerve cells grow and extend unidirectionally within the Anisogels, in comparison to hydrogels without fibers or with randomly oriented fibers. The neurons inside the Anisogel show spontaneous electrical activity with calcium signals propagating along the anisotropy axis of the material. The reported system is simple and elegant and the short magneto-responsive fibers can be produced with an effective high-throughput method, ideal for a minimal invasive route for aligned tissue therapy.