Search Results

Now showing 1 - 3 of 3
  • Item
    Nonlinear Optical Characterization of CsPbBr3 Nanocrystals as a Novel Material for the Integration into Electro-Optic Modulators
    (Millersville, PA : Materials Research Forum LLC, 2020) Vitale, Francesco; De Matteis, Fabio; Casalboni, Mauro; Prosposito, Paolo; Steglich, Patrick; Ksianzou, Viachaslau; Breiler, Christian; Schrader, Sigurd; Paci, Barbara; Generosi, Amanda; Prosposito, Paolo
    The present work is concerned with the investigation of the nonlinear optical response of green emissive CsPbBr3 nanocrystals, in the form of colloidal dispersions in toluene, synthesized via a room-temperature ligand-assisted supersaturation recrystallization (LASR) method. After carrying out a preliminary characterization via X-Ray Diffraction (XRD) and Absorption and Photoluminescence (PL) Spectroscopies, the optical nonlinearity of the as-obtained colloids is probed by means of a single-beam Z-scan setup. Results show that the material in question, within the sensitivity of the experimental apparatus, exhibits a nonlinear refractive index n2 that is the order of 10-15 cm2/W. Moreover, a three-photon absorption mechanism (3PA) is postulated, according to the fitting of the recorded Z-scan traces and the fundamental absorption threshold, which turns out to be off resonance with twice the energy of the laser radiation. A figure of merit is, then, calculated as an indicator of the quality of the CsPbBr3 nanocrystals as a candidate material for photonic devices, for instance, Kerr-like electro-optic modulators (EOMs).
  • Item
    The role of substrate temperature and magnetic filtering for DLC by cathodic arc evaporation
    (Basel : MDPI, 2019) Lux, Helge; Edling, Matthias; Lucci, Massimiliano; Kitzmann, Julia; Villringer, Claus; Siemroth, Peter; De Matteis, Fabio; Schrader, Sigurd
    Diamond-like carbon (DLC) films were deposited using two different types of high current arc evaporation. The first process used a magnetic particle filter to remove droplets from the plasma. For the second process, the samples were put into a metallic cage which was placed directly above the plasma source. For both processes, we varied the substrate temperature from 21 to 350 °C in order to investigate the temperature effect. The samples were characterized using SEM, AFM, XPS, Raman Spectroscopy, Ellipsometry, Photometry, and Nano Indentation in order to compare both methods of deposition and provide a careful characterization of such DLC films. We found that the sp3 content and the hardness can be precisely adjusted by changing the substrate temperature. Furthermore, in the case of unfiltered deposition, the optical constants can be shifted in the direction of higher absorbance in order to produce black and hard carbon coatings. © 2019 by the authors.
  • Item
    Silicon-organic hybrid photonics: Overview of recent advances, electro-optical effects and CMOS-integration concepts
    (Bristol : IOP Publishing, 2021) Steglich, Patrick; Mai, Christian; Villringer, Claus; Dietzel, Birgit; Bondarenko, Siegfried; Ksianzou, Viachaslau; Villasmunta, Francesco; Zesch, Christoph; Pulwer, Silvio; Burger, Martin; Bauer, Joachim; Heinrich, Friedhelm; Schrader, Sigurd; Vitale, Francesco; De Matteis, Fabio; Prosposito, Paolo; Casalboni, Mauro; Mai, Andreas
    In recent decades, much research effort has been invested in the development of photonic integrated circuits, and silicon-on-insulator technology has been established as a reliable platform for highly scalable silicon-based electro-optical modulators. However, the performance of such devices is restricted by the inherent material properties of silicon. An approach to overcoming these deficiencies is to integrate organic materials with exceptionally high optical nonlinearities into a silicon-on-insulator photonic platform. Silicon–organic hybrid photonics has been shown to overcome the drawbacks of silicon-based modulators in terms of operating speed, bandwidth, and energy consumption. This work reviews recent advances in silicon–organic hybrid photonics and covers the latest improvements to single components and device concepts. Special emphasis is given to the in-device performance of novel electro-optical polymers and the use of different electro-optical effects, such as the linear and quadratic electro-optical effect, as well as the electric-field-induced linear electro-optical effect. Finally, the inherent challenges of implementing non-linear optical polymers on a silicon photonic platform are discussed and a perspective for future directions is given.