Search Results

Now showing 1 - 4 of 4
  • Item
    Ultrasensitive Chiral Spectroscopy by Dynamical Symmetry Breaking in High Harmonic Generation
    (College Park, Md. : APS, 2019) Neufeld, Ofer; Ayuso, David; Decleva, Piero; Ivanov, Misha Y.; Cohen, Oren
    We propose and numerically demonstrate a new chiral spectroscopy method that is based on a universal system-independent mechanism of dynamical symmetry breaking in high harmonic generation (HHG). The proposed technique relies only on intense electric-dipole transitions and not on their interplay with magnetic dipole transitions. The symmetry breaking results in the emission of otherwise “forbidden” harmonics from chiral media (i.e., that are not emitted from achiral or racemic media), yielding a huge, nearly background-free, chiral-achiral signal that is correlated to the magnitude of the medium’s enantiomeric excess. The handedness of the medium can be directly detected by measuring the polarization helicity of the emitted harmonics. Moreover, the strength of the “allowed” harmonics (that are not related to symmetry breaking) is chirality independent; hence, they can be used as a reference to probe chiral degrees of freedom within a single measurement. We numerically demonstrate up to 99% chiral-achiral signal level (normalized difference between the chiral and achiral HHG spectra) from microscopic gas-phase emission using state-of-the-art models for HHG in bromochlorofluoromethane and propylene oxide. We expect the new method to give rise to precise tabletop characterization of chiral media in the gas phase and for highly sensitive time-resolved probing of dynamical chiral processes with femtosecond-to-attosecond temporal resolution.
  • Item
    Enantio-sensitive unidirectional light bending
    ([London] : Nature Publishing Group UK, 2021) Ayuso, David; Ordonez, Andres F.; Decleva, Piero; Ivanov, Misha; Smirnova, Olga
    Structured light, which exhibits nontrivial intensity, phase, and polarization patterns in space, has key applications ranging from imaging and 3D micromanipulation to classical and quantum communication. However, to date, its application to molecular chirality has been limited by the weakness of magnetic interactions. Here we structure light’s local handedness in space to introduce and realize an enantio-sensitive interferometer for efficient chiral recognition without magnetic interactions, which can be seen as an enantio-sensitive version of Young’s double slit experiment. Upon interaction with isotropic chiral media, such chirality-structured light effectively creates chiral emitters of opposite handedness, located at different positions in space. We show that if the distribution of light’s handedness breaks left-right symmetry, the interference of these chiral emitters leads to unidirectional bending of the emitted light, in opposite directions in media of opposite handedness, even if the number of the left-handed and right-handed emitters excited in the medium is exactly the same. Our work introduces the concepts of polarization of chirality and chirality-polarized light, exposes the immense potential of sculpting light’s local chirality, and offers novel opportunities for efficient chiral discrimination, enantio-sensitive optical molecular fingerprinting and imaging on ultrafast time scales.
  • Item
    Strong-field control and enhancement of chiral response in bi-elliptical high-order harmonic generation: an analytical model
    (Bristol : IOP Publ., 2018-05-30) Ayuso, David; Decleva, Piero; Patchkovskii, Serguei; Smirnova, Olga
    The generation of high-order harmonics in a medium of chiral molecules driven by intense bi-elliptical laser fields can lead to strong chiroptical response in a broad range of harmonic numbers and ellipticities (Ayuso et al 2018 J. Phys. B: At. Mol. Opt. Phys. 51 06LT01). Here we present a comprehensive analytical model that can describe the most relevant features arising in the high-order harmonic spectra of chiral molecules driven by strong bi-elliptical fields. Our model recovers the physical picture underlying chiral high-order harmonic generation (HHG) based on ultrafast chiral hole motion and identifies the rotationally invariant molecular pseudoscalars responsible for chiral dynamics. Using the chiral molecule propylene oxide as an example, we show that one can control and enhance the chiral response in bi-elliptical HHG by tailoring the driving field, in particular by tuning its frequency, intensity and ellipticity, exploiting a suppression mechanism of achiral background based on the linear Stark effect.
  • Item
    Chiral dichroism in bi-elliptical high-order harmonic generation
    (Bristol : IOP Publ., 2018-02-28) Ayuso, David; Decleva, Piero; Patchkovskii, Serguei; Smirnova, Olga
    The application of strong bi-elliptically polarized laser fields to the generation of high-order harmonics in organic molecules offers exceptional opportunities for chiral recognition and chiral discrimination. These fields are made by combining an elliptically polarized fundamental, typically in the infrared range, with its counter-rotating second harmonic. Here we present a theoretical study of the harmonic emission from the chiral molecule propylene oxide in bi-elliptical fields. Our calculations include, for the first time in such a complex system, accurate photorecomination matrix elements, evaluated using the static-exchange density functional theory method. We show that bi-elliptical light can induce strong chiral dichroism in the harmonic spectra of chiral molecules in a broad range of harmonic numbers and ellipticities.