Search Results

Now showing 1 - 10 of 10
  • Item
    Optical assets of in situ electro-assembled platinum black nanolayers
    (London : Nature Publishing Group, 2017) Stanca, S.E.; Hänschke, F.; Zieger, G.; Dellith, J.; Ihring, A.; Undisz, A.; Meyer, H.-G.
    Optoelectronic technology has been increasingly driven towards miniaturization. In this regard, maintaining the optical properties of the bulk materials while reducing their size is a critical need. How thin must the film be to preserve the bulk material´s optical absorbance and reflectance characteristics? This is the central question for our study of the in situ electro-assembly broad band optical absorber films of platinum in non-aqueous solution of PtCl4. By reducing the in situ constructed film to sub-visible-wavelength thicknesses, the measured reflectance in the region from the ultraviolet to the infrared remained close to that exhibited by the micrometre-width films. These platinum black films broadly absorb electromagnetic waves at a sub-incident-wavelength thickness owing to their plasmonically increased absorbance cross-section. Simulation of various incident energy electron trajectories gives insights into the electron depth through the porous platinum black of ρ = 1.6 g/cm3 and previews the optical behaviour close to the atomic thickness.
  • Item
    Aqueous Black Colloids of Reticular Nanostructured Gold
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Stanca, S.E.; Fritzsche, W.; Dellith, J.; Froehlich, F.; Undisz, A.; Deckert, V.; Krafft, C.; Popp, J.
    Since ancient times, noble gold has continuously contributed to several aspects of life from medicine to electronics. It perpetually reveals its new features. We report the finding of a unique form of gold, reticular nanostructured gold (RNG), as an aqueous black colloid, for which we present a one-step synthesis. The reticules consist of gold crystals that interconnect to form compact strands. RNG exhibits high conductivity and low reflection and these features, coupled with the high specific surface area of the material, could prove valuable for applications in electronics and catalysis. Due to high absorption throughout the visible and infrared domain, RNG has the potential to be applied in the construction of sensitive solar cells or as a substrate for Raman spectroscopy.
  • Item
    Chemical and electrochemical synthesis of platinum black
    (London : Nature Publishing Group, 2017) Stanca, S.E.; Hänschke, F.; Ihring, A.; Zieger, G.; Dellith, J.; Kessler, E.; Meyer, H.-G.
    We present electrochemical and chemical synthesis of platinum black at room temperature in aqueous and non-aqueous media. X-ray analysis established the purity and crystalline nature. The electron micrographs indicate that the nanostructures consist of platinum crystals that interconnect to form porous assemblies. Additionally, the electron micrographs of the platinum black thin layer, which was electrochemically deposited on different metallic and semiconductive substrates (aluminium, platinum, silver, gold, tin-cooper alloy, indium-tin-oxide, stainless steel, and copper), indicate that the substrate influences its porous features but not its absorbance characteristics. The platinum black exhibited a broad absorbance and low reflectance in the ultraviolet, visible, and infrared regions. These characteristics make this material suitable for use as a high-temperature resistant absorber layer for the fabrication of microelectronics.
  • Item
    Nanoscopic tip sensors fabricated by gas phase etching of optical glass fibers
    (Heidelberg : Springer, 2012) Bierlich, J.; Kobelke, J.; Brand, D.; Kirsch, K.; Dellith, J.; Bartelt, H.
    Silica-based fiber tips are used in a variety of spectroscopic, micro- or nano-scopic optical sensor applications and photonic micro-devices. The miniaturization of optical sensor systems and the technical implementation using optical fibers can provide new sensor designs with improved properties and functionality for new applications. The selective-etching of specifically doped silica fibers is a promising method in order to form complex photonic micro structures at the end or within fibers such as tips and cavities in various shapes useful for the all-fiber sensor and imaging applications. In the present study, we investigated the preparation of geometrically predefined, nanoscaled fiber tips by taking advantage of the dopant concentration profiles of highly doped step-index fibers. For this purpose, a gas phase etching process using hydrofluoric acid (HF) vapor was applied. The shaping of the fiber tips was based on very different etching rates as a result of the doping characteristics of specific optical fibers. Technological studies on the influence of the etching gas atmosphere on the temporal tip shaping and the final geometry were performed using undoped and doped silica fibers. The influence of the doping characteristics was investigated in phosphorus-, germanium-, fluorine- and boron-doped glass fibers. Narrow exposed as well as protected internal fiber tips in various shapes and tip radiuses down to less than 15 nm were achieved and characterized geometrically and topologically. For investigations into surface plasmon resonance effects, the fiber tips were coated with nanometer-sized silver layers by means of vapour deposition and finally subjected to an annealing treatment.
  • Item
    Superconductivity in multi-phase Mg-B-O compounds
    (Amsterdam [u.a.] : Elsevier, 2012) Prikhna, T.; Gawalek, W.; Eisterer, M.; Weber, H.W.; Noudem, J.; Sokolovsky, V.; Chaud, X.; Moshchil, V.; Karpets, M.; Kovylaev, V.; Borimskiy, A.; Tkach, V.; Kozyrev, A.; Kuznietsov, R.; Dellith, J.; Shmidt, C.; Basyuk, T.; Litzkendorf, D.; Karau, F.; Dittrich, U.; Tomsic, M.
    Structures of MgB2-based materials manufactured under pressure (up to 2 GPa) by different methods having high superconducting performance and connectivity are multiphase and contain different Mg-B-O compounds. Some oxygen can be incorporated into MgB2 and boron into MgO structures, MgBx (X=4-20) inclusions contain practically no oxygen. Regulating manufacturing temperature, pressure, introducing additions one can influence oxygen and boron distribution in the materials and thus, affect the formation, amount and sizes of Mg-B-O and MgBx inclusions and changing type of pinning, pinning force and so affect critical current density jc. The boron concentration increase in initial Mg and B mixture allows obtaining sample containing 88.5 wt% of MgB12 with Tc of 37.4 K (estimated magnetically).
  • Item
    Plasticity, crack initiation and defect resistance in alkali-borosilicate glasses: From normal to anomalous behavior
    (Amsterdam [u.a.] : Elsevier Science, 2015) Limbach, R.; Winterstein-Beckmann, A.; Dellith, J.; Möncke, D.; Wondraczek, L.
    We provide a comprehensive description of the defect tolerance of sodium-borosilicate glasses upon sharp contact loading. This is motivated by the key role which is taken by this particular glass system in a wide variety of applications, ranging from electronic substrates, display covers and substrates for biomedical imaging and sensing to, e.g., radioactive waste vitrification. The present report covers the mechanical properties of glasses in the Na2O–B2O3–SiO2 ternary over the broad range of compositions from pure SiO2 to binary sodium-borates, and crossing the regions of various commercially relevant specialty borosilicate glasses, such as the multi-component Duran-, Pyrex- and BK7-type compositions and typical soda-lime silicate glasses, which are also included in this study. In terms of structure, the considered glasses may be separated into two groups, that is, one series which contains only bridging oxygen atoms, and another series which is designed with an increasing number of non-bridging oxygen ions. Elastic moduli, Poisson ratio, hardness as well as creep and crack resistance were evaluated, as well as the contribution of densification to the overall amount of indentation deformation. Correlations between the mechanical properties and structural characteristics of near- and mid-range order are discussed, from which we obtain a mechanistic view at the molecular reactions which govern the overall deformation reaction and, ultimately, contact cracking.
  • Item
    Silicon Powder-Based Wafers for Low-Cost Photovoltaics: Laser Treatments and Nanowire Etching
    (New York, NY [u.a.] : Hindawi Publ. Corp., 2018) Jia, G.; Plentz, J.; Gawlik, A.; Azar, A.S.; Stokkan, G.; Syvertsen, M.; Carvalho, P.A.; Dellith, J.; Dellith, A.; Andrä, G.; Ulyashin, A.
    In this study, laser-treated polycrystalline Si (pc-Si) wafers, fabricated by wire sawing of hot-pressed ingots sintered from Si powder, have been investigated. As-cut wafers and those with high-quality thin Si layers deposited on top of them by e-beam have been subjected to laser irradiation to clarify typical trends of structural modifications caused by laser treatments. Moreover, possibility to use laser-treated Si powder-based substrates for fabrication of advanced Si structures has been analysed. It is established that (i) Si powder-based wafers with thicknesses 180 μm can be fully (from the front to back side) or partly (subsurface region) remelted by a diode laser and grain sizes in laser-treated regions can be increased; (ii) a high-quality top layer can be fabricated by crystallization of an additional a-Si layer deposited by e-beam evaporation on top of the pc-Si; and (iii) silicon nanowires can be formed by metal-assisted wet chemical etching (MAWCE) of polished Si powder-based wafers and as-cut wafers irradiated with medium laser power, while a surface texturing on the as-cut pc-Si wafers occur, and no nanowires can form in the region subject to a liquid phase crystallization (LPC) caused by high-power laser treatments.
  • Item
    Measuring conditions for second order X-ray Bragg-spectrometry
    (Bristol : Institute of Physics Publishing, 2014) Dellith, J.; Scheffel, A.; Wendt, M.
    The KL2,3 (α)1,2-lines of 19K, the L3M4,5 (α)1,2-lines of 48Cd, and the M5N6,7 (α)1,2-lines of 92U are lines of comparable energy in the region of approximately 3 keV. In none of these cases were we able to resolve the three doublets when recording the spectra in first order Bragg spectrometry using a PET crystal as the dispersing element. For the purpose of enhancing the resolving power of the spectrometer, the three α spectra were recorded in second order reflection, thereby transferring the lines into another spectral region dominated by X-ray quanta of half the energy. In order to achieve high net peak intensities as well as a high peak-to-background ratio and, consequently, a high level of detection capability, the discriminator settings should be optimized quite carefully. In this manner, we were able to resolve the three α doublets and estimate α2/α1 intensity ratios. Inexplicably, current monographs, e.g., by Goldstein et al, do not contain any indications about the rational use of high order spectrometry. Only a few rather old monographs contain some hints in this regard.
  • Item
    Plasmon response evaluation based on image-derived arbitrary nanostructures
    (Cambridge : RSC Publ., 2018) Trautmann, S.; Richard-Lacroix, M.; Dathe, A.; Schneidewind, H.; Dellith, J.; Fritzsche, W.; Deckert, V.
    The optical response of realistic 3D plasmonic substrates composed of randomly shaped particles of different size and interparticle distance distributions in addition to nanometer scale surface roughness is intrinsically challenging to simulate due to computational limitations. Here, we present a Finite Element Method (FEM)-based methodology that bridges in-depth theoretical investigations and experimental optical response of plasmonic substrates composed of such silver nanoparticles. Parametrized scanning electron microscopy (SEM) images of surface enhanced Raman spectroscopy (SERS) active substrate and tip-enhanced Raman spectroscopy (TERS) probes are used to simulate the far-and near-field optical response. Far-field calculations are consistent with experimental dark field spectra and charge distribution images reveal for the first time in arbitrary structures the contributions of interparticle hybridized modes such as sub-radiant and super-radiant modes that also locally organize as basic units for Fano resonances. Near-field simulations expose the spatial position-dependent impact of hybridization on field enhancement. Simulations of representative sections of TERS tips are shown to exhibit the same unexpected coupling modes. Near-field simulations suggest that these modes can contribute up to 50% of the amplitude of the plasmon resonance at the tip apex but, interestingly, have a small effect on its frequency in the visible range. The band position is shown to be extremely sensitive to particle nanoscale roughness, highlighting the necessity to preserve detailed information at both the largest and the smallest scales. To the best of our knowledge, no currently available method enables reaching such a detailed description of large scale realistic 3D plasmonic systems.
  • Item
    A classical description of subnanometer resolution by atomic features in metallic structures
    (Cambridge : RSC Publ., 2016) Trautmann, S.; Aizpurua, J.; Götz, I.; Undisz, A.; Dellith, J.; Schneidewind, H.; Rettenmayr, M.; Deckert, V.
    Recent experiments have evidenced sub-nanometer resolution in plasmonic-enhanced probe spectroscopy. Such a high resolution cannot be simply explained using the commonly considered radii of metallic nanoparticles on plasmonic probes. In this contribution the effects of defects as small as a single atom found on spherical plasmonic particles acting as probing tips are investigated in connection with the spatial resolution provided. The presence of abundant edge and corner sites with atomic scale dimensions in crystalline metallic nanoparticles is evident from transmission electron microscopy (TEM) images. Electrodynamic calculations based on the Finite Element Method (FEM) are implemented to reveal the impact of the presence of such atomic features in probing tips on the lateral spatial resolution and field localization. Our analysis is developed for three different configurations, and under resonant and non-resonant illumination conditions, respectively. Based on this analysis, the limits of field enhancement, lateral resolution and field confinement in plasmon-enhanced spectroscopy and microscopy are inferred, reaching values below 1 nanometer for reasonable atomic sizes.