Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

Large area graphene deposition on hydrophobic surfaces, flexible textiles, glass fibers, 3D structures, and adhesion of graphene layer

2019, Jia, Guobin, Plentz, Jonathan, Dellith, Jan, Dellith, Andrea, Wahyuono, Ruri Agung, Andrä, Gudrun

Graphene and its derivatives have many superior electrical, thermal, mechanical, chemical, and structural properties, and promise for many applications. One of the issues for scalable applications is the lack of a simple, reliable method that allows the deposit of a well-ordered monolayer using low-cost graphene flakes onto target substrates with different surface properties. Another issue is the adhesion of the deposited graphene thin film, which has not been well investigated yet. Following our former finding of a double self-assembly (DSA) process for efficient deposition of a monolayer of graphene flakes (MGFs), in this work we demonstrate that the DSA process can be applied even on very challenging samples including highly hydrophobic polytetrafluoroethylene (PTFE), flexible textiles, complex 3D objects, and thin glass fibers. Additionally, we tested adhesion of the graphene flakes on the flat glass substrate by scotch tape peel test of the MGFs. The results show that the graphene flakes adhere quite well on the flat glass substrate and most of the graphene flakes stay on the glass. These findings may trigger many large-scale applications of low-cost graphene feedstocks and other 2D materials.

Loading...
Thumbnail Image
Item

Viscosity of fluorine-doped silica glasses

2018, Kirchhof, Johannes, Unger, Sonja, Dellith, Jan

The viscous behavior of fluorine-doped synthetic silica is studied using collapsing experiments with different fluorine-doped tubes on a modified chemical vapor deposition (MCVD) lathe. The principles, techniques, and evaluations of this method are the same as the ones demonstrated previously in detail with pure and doped silica. The present investigations provide information about the influence of fluorine doping up to a concentration of about 10 mol% F (3.4 wt% F) in a temperature range between 1600°C and 2000°C. Fluorine doping leads to a systematic decrease in the viscosity, combined with a decrease of the activation energy of the viscous flow and a certain increase of the pre-exponential factor. In summary, this demonstrates the weakening influence of fluorine on the glass network, similar to the incorporation of hydroxyl or chlorine.

Loading...
Thumbnail Image
Item

Combining super-resolution microcopy with neuronal network recording using magnesium fluoride thin films as cover layer for multi-electrode array technology

2019, Schmidl, Lars, Schmidl, Gabriele, Gawlik, Annett, Dellith, Jan, HĂ¼bner, Uwe, Tympel, Volker, Schmidl, Frank, Plentz, Jonathan, Geis, Christian, Haselmann, Holger

We present an approach for fabrication of reproducible, chemically and mechanically robust functionalized layers based on MgF2 thin films on thin glass substrates. These show great advantages for use in super-resolution microscopy as well as for multi-electrode-array fabrication and are especially suited for combination of these techniques. The transparency of the coated substrates with the low refractive index material is adjustable by the layer thickness and can be increased above 92%. Due to the hydrophobic and lipophilic properties of the thin crystalline MgF2 layers, the temporal stable adhesion needed for fixation of thin tissue, e.g. cryogenic brain slices is given. This has been tested using localization-based super-resolution microscopy with currently highest spatial resolution in light microscopy. We demonstrated that direct stochastic optical reconstruction microscopy revealed in reliable imaging of structures of central synapses by use of double immunostaining of post- (homer1 and GluA2) and presynaptic (bassoon) marker structure in a 10 µm brain slice without additional fixing of the slices. Due to the proven additional electrical insulating effect of MgF2 layers, surfaces of multi-electrode-arrays were coated with this material and tested by voltage-current-measurements. MgF2 coated multi-electrode-arrays can be used as a functionalized microscope cover slip for combination with live-cell super-resolution microscopy.

Loading...
Thumbnail Image
Item

Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics

2015, Gao, Guojun, Winterstein-Beckmann, Anja, Surzhenko, Oleksii, Dubs, Carsten, Dellith, Jan, Schmidt, Markus A., Wondraczek, Lothar

We report on the magneto-optical (MO) properties of heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb3+ ion concentration of up to 9.7 Ă— 1021 cm−3, the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400–1500 nm is found for a Tb3+ concentration of ~6.5 Ă— 1021 cm−3. For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb3+ photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2 ms at a stimulated emission cross-section σem of ~1.1 Ă— 10−21 cm2 for ~ 5.0 Ă— 1021 cm−3 Tb3+. This results in an optical gain parameter σem*Ï„ of ~2.5 Ă— 10−24 cm2s, what could be of interest for implementation of a Tb3+ fiber laser.

Loading...
Thumbnail Image
Item

Self-Assembled Graphene/MWCNT Bilayers as Platinum- Free Counter Electrode in Dye-Sensitized Solar Cells

2019, Wahyuono, Ruri Agung, Jia, Guobin, Plentz, Jonathan, Dellith, Andrea, Dellith, Jan, Herrmann-Westendorf, Felix, Seyring, Martin, Presselt, Martin, Andrä, Gudrun, Rettenmayr, Markus, Dietzek, Benjamin

We describe the preparation and properties of bilayers of graphene- and multi-walled carbon nanotubes (MWCNTs) as an alternative to conventionally used platinum-based counter electrode for dye-sensitized solar cells (DSSC). The counter electrodes were prepared by a simple and easy-to-implement double self-assembly process. The preparation allows for controlling the surface roughness of electrode in a layer-by-layer deposition. Annealing under N2 atmosphere improves the electrode's conductivity and the catalytic activity of graphene and MWCNTs to reduce the I3 − species within the electrolyte of the DSSC. The performance of different counter-electrodes is compared for ZnO photoanode-based DSSCs. Bilayer electrodes show higher power conversion efficiencies than monolayer graphene electrodes or monolayer MWCNTs electrodes. The bilayer graphene (bottom)/MWCNTs (top) counter electrode-based DSSC exhibits a maximum power conversion efficiency of 4.1 % exceeding the efficiency of a reference DSSC with a thin film platinum counter electrode (efficiency of 3.4 %). In addition, the double self-assembled counter electrodes are mechanically stable, which enables their recycling for DSSCs fabrication without significant loss of the solar cell performance. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Structure of Ni(OH)2 intermediates determines the efficiency of NiO-based photocathodes – a case study using novel mesoporous NiO nanostars

2019, Wahyuono, Ruri Agung, Dellith, Andrea, Schmidt, Christa, Dellith, Jan, Ignaszak, Anna, Seyring, Martin, Rettenmayr, Markus, Fize, Jennifer, Artero, Vincent, Chavarot-Kerlidou, Murielle, Dietzek, Benjamin

We report the wet chemical synthesis of mesoporous NiO nanostars (NS) as photocathode material for dye-sensitized solar cells (DSSCs). The growth mechanism of NiO NS as a new morphology of NiO is assessed by TEM and spectroscopic investigations. The NiO NS are obtained upon annealing of preformed β-Ni(OH)2 into pristine NiO with low defect concentrations and favorable electronic configuration for dye sensitization. The NiO NS consist of fibers self-assembled from nanoparticles yielding a specific surface area of 44.9 m2 g-1. They possess a band gap of 3.83 eV and can be sensitized by molecular photosensitizers bearing a range of anchoring groups, e.g. carboxylic acid, phosphonic acid, and pyridine. The performance of NiO NS-based photocathodes in photoelectrochemical application is compared to that of other NiO morphologies, i.e. nanoparticles and nanoflakes, under identical conditions. Sensitization of NiO NS with the benchmark organic dye P1 leads to p-DSSCs with a high photocurrent up to 3.91 mA cm-2 whilst the photoelectrochemical activity of the NiO NS photocathode in aqueous medium in the presence of an irreversible electron acceptor is reflected by generation of a photocurrent up to 23 μA cm-2 © 2019 The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

Fabrication of self-assembled spherical Gold Particles by pulsed UV Laser Treatment

2018, Schmidl, Gabriele, Jia, Guobin, Gawlik, Annett, Kreusch, Jonathan, Schmidl, Frank, Dellith, Jan, Dathe, André, Lin, Zhan-Hong, Huang, Jer-Shing, Plentz, Jonathan

We report on the fabrication of spherical Au spheres by pulsed laser treatment using a KrF excimer laser (248 nm, 25 ns) under ambient conditions as a fast and high throughput fabrication technique. The presented experiments were realized using initial Au layers of 100 nm thickness deposited on optically transparent and low cost Borofloat glass or single-crystalline SrTiO3 substrates, respectively. High (111)-orientation and smoothness (RMS ≈ 1 nm) are the properties of the deposited Au layers before laser treatment. After laser treatment, spheres with size distribution ranging from hundreds of nanometers up to several micrometers were produced. Single-particle scattering spectra with distinct plasmonic resonance peaks are presented to reveal the critical role of optimal irradiation parameters in the process of laser induced particle self-assembly. The variation of irradiation parameters like fluence and number of laser pulses influences the melting, dewetting and solidification process of the Au layers and thus the formation of extremely well shaped spherical particles. The gold layers on Borofloat glass and SrTiO3 are found to show a slightly different behavior under laser treatment. We also discuss the effect of substrates.We report on the fabrication of spherical Au spheres by pulsed laser treatment using a KrF excimer laser (248 nm, 25 ns) under ambient conditions as a fast and high throughput fabrication technique. The presented experiments were realized using initial Au layers of 100 nm thickness deposited on optically transparent and low cost Borofloat glass or single-crystalline SrTiO3 substrates, respectively. High (111)-orientation and smoothness (RMS ≈ 1 nm) are the properties of the deposited Au layers before laser treatment. After laser treatment, spheres with size distribution ranging from hundreds of nanometers up to several micrometers were produced. Single-particle scattering spectra with distinct plasmonic resonance peaks are presented to reveal the critical role of optimal irradiation parameters in the process of laser induced particle self-assembly. The variation of irradiation parameters like fluence and number of laser pulses influences the melting, dewetting and solidification process of the Au layers and thus the formation of extremely well shaped spherical particles. The gold layers on Borofloat glass and SrTiO3 are found to show a slightly different behavior under laser treatment. We also discuss the effect of substrates.

Loading...
Thumbnail Image
Item

ZnO nanoflowers-based photoanodes: aqueous chemical synthesis, microstructure and optical properties

2016, Wahyuono, Ruri Agung, Schmidt, Christa, Dellith, Andrea, Dellith, Jan, Schulz, Martin, Seyring, Martin, Rettenmayr, Markus, Plentz, Jonathan, Dietzek, Benjamin

We have developed an efficient, low temperature, synthetic route for ZnO nanoflowers (NFs) as photoanode material. This alternative route yields small flowerlike nanostructures, built from densely self-assembled tip-ended rod structures. The obtained ZnO NFs possess a large bandgap of 3.27 - 3.39 eV, enabling the generation of an average open current voltage of 0.56 V. Additionally, they show a high internal light harvesting of 14.6•10-7A-mol-1. The growth mechanism and self-assembly of ZnO NFs were studied in detail by joint spectroscopic-TEM investigations. It is shown that the ZnO crystallite size increases with increasing annealing temperatures and that the stress and the improved crystallinity are induced by annealing and reduce the lattice strain and the dislocation density. The bandgaps of ZnO are affected by the lattice strain revealing an optimal region of lattice strain to gain high bandgap energies. The properties of the synthesized ZnO NFs are compared with other morphologies, i.e. ZnO spherical aggregates (SPs) and ZnO nanorods (NRs), and are tested as electrode materials in dye-sensitized solar cells.

Loading...
Thumbnail Image
Item

Multimode Fabry-Perot Interferometer Probe based on Vernier Effect for Enhanced Temperature Sensing

2019, Gomes, AndrĂ© D., Becker, Martin, Dellith, Jan, Zibaii, Mohammad Ismail, Latifi, Hamid, Rothhardt, Manfred, Bartelt, Hartmut, FrazĂ£o, Orlando

New miniaturized sensors for biological and medical applications must be adapted to the measuring environments and they should provide a high measurement resolution to sense small changes. The Vernier effect is an effective way of magnifying the sensitivity of a device, allowing for higher resolution sensing. We applied this concept to the development of a small-size optical fiber Fabry–Perot interferometer probe that presents more than 60-fold higher sensitivity to temperature than the normal Fabry–Perot interferometer without the Vernier effect. This enables the sensor to reach higher temperature resolutions. The silica Fabry–Perot interferometer is created by focused ion beam milling of the end of a tapered multimode fiber. Multiple Fabry–Perot interferometers with shifted frequencies are generated in the cavity due to the presence of multiple modes. The reflection spectrum shows two main components in the Fast Fourier transform that give rise to the Vernier effect. The superposition of these components presents an enhancement of sensitivity to temperature. The same effect is also obtained by monitoring the reflection spectrum node without any filtering. A temperature sensitivity of −654 pm/°C was obtained between 30 °C and 120 °C, with an experimental resolution of 0.14 °C. Stability measurements are also reported.

Loading...
Thumbnail Image
Item

Ultrathin niobium nanofilms on fiber optical tapers--a new route towards low-loss hybrid plasmonic modes

2015, Wieduwilt, Torsten, Tuniz, Alessandro, Linzen, Sven, Goerke, Sebastian, Dellith, Jan, HĂ¼bner, Uwe, Schmidt, Markus A.

Due to the ongoing improvement in nanostructuring technology, ultrathin metallic nanofilms have recently gained substantial attention in plasmonics, e.g. as building blocks of metasurfaces. Typically, noble metals such as silver or gold are the materials of choice, due to their excellent optical properties, however they also possess some intrinsic disadvantages. Here, we introduce niobium nanofilms (~10 nm thickness) as an alternate plasmonic platform. We demonstrate functionality by depositing a niobium nanofilm on a plasmonic fiber taper and observe a dielectric-loaded niobium surface-plasmon excitation for the first time, with a modal attenuation of only 3–4 dB/mm in aqueous environment and a refractive index sensitivity up to 15 μm/RIU if the analyte index exceeds 1.42. We show that the niobium nanofilm possesses bulk optical properties, is continuous, homogenous and inert against any environmental influence, thus possessing several superior properties compared to noble metal nanofilms. These results demonstrate that ultrathin niobium nanofilms can serve as a new platform for biomedical diagnostics, superconducting photonics, ultrathin metasurfaces or new types of optoelectronic devices.