Search Results

Now showing 1 - 10 of 22
Loading...
Thumbnail Image
Item

Germania and alumina dopant diffusion and viscous flow effects at preparation of doped optical fibers

2017, Kobelke, Jens, Schuster, Kay, Bierlich, Jörg, Unger, Sonja, Schwuchow, Anka, Elsmann, Tino, Dellith, Jan, Aichele, Claudia, Fatobene Ando, Ron, Bartelt, Hartmut

We report on germania and alumina dopant profile shift effects at preparation of compact optical fibers using packaging methods (Stack-and-Draw method, Rod-in-Tube (RiT) technique). The sintering of package hollow volume by viscous flow results in a shift of the core-pitch ratio in all-solid microstructured fibers. The ratio is increased by about 5% in the case of a hexagonal package. The shift by diffusion effects of both dopants is simulated for typical slow speed drawing parameters. Thermodynamic approximations of surface dissociation of germania doped silica suggest the need of an adequate undoped silica barrier layer to prevent an undesired bubble formation at fiber drawing. In contrast, alumina doping does not estimate critical dissociation effects with vaporous aluminium oxide components. We report guide values of diffusion length of germania and alumina for the drawing process by kinetic approximation. The germania diffusion involves a small core enlargement, typically in the sub-micrometer scale. Though, the alumina diffusion enlarges it by a few micrometers. A drawn pure alumina preform core rod transforms to an amorphous aluminosilicate core with a molar alumina concentration of only about 50% and a non-gaussian concentration profile.

Loading...
Thumbnail Image
Item

Plasma-based VAD process for multiply doped glass powders and high-performance fiber preforms with outstanding homogeneity

2020, Trautvetter, Tom, Schäfer, Jan, Benzine, Omar, Methling, Ralf, Baierl, Hardy, Reichel, Volker, Dellith, Jan, Köpp, Daniel, Hempel, Frank, Stankov, Marjan, Baeva, Margarita, Foest, RĂ¼diger, Wondraczek, Lothar, Wondraczek, Katrin, Bartelt, Hartmut

An innovative approach using the vapor axial deposition (VAD), for the preparation of silica-based high-power fiber laser preforms, is described in this study. The VAD uses a plasma deposition system operating at atmospheric pressure, fed by a single, chemically adapted solution containing precursors of laser-active dopants (e.g., Yb2O3), glass-modifier species (e.g., Al2O3), and the silica matrix. The approach enables simultaneous doping with multiple optically active species and overcomes some of the current technological limitations encountered with well-established fiber preform technologies in terms of dopant distribution, doping levels, and achievable active core diameter. The deposition of co-doped silica with outstanding homogeneity is proven by Raman spectroscopy and electron probe microanalysis. Yb2O3 concentrations are realized up to 0.3 mol% in SiO2, with simultaneous doping of 3 mol% of Al2O3.

Loading...
Thumbnail Image
Item

Biomimic Vein-Like Transparent Conducting Electrodes with Low Sheet Resistance and Metal Consumption

2020, Jia, Guobin, Plentz, Jonathan, Dellith, Andrea, Schmidt, Christa, Dellith, Jan, Schmidl, Gabriele, Andrä, Gudrun

Abstract: In this contribution, inspired by the excellent resource management and material transport function of leaf veins, the electrical transport function of metallized leaf veins is mimicked from the material transport function of the vein networks. By electroless copper plating on real leaf vein networks with copper thickness of only several hundred nanometre up to several micrometre, certain leaf veins can be converted to transparent conductive electrodes with an ultralow sheet resistance 100 times lower than that of state-of-the-art indium tin oxide thin films, combined with a broadband optical transmission of above 80% in the UV–VIS–IR range. Additionally, the resource efficiency of the vein-like electrode is characterized by the small amount of material needed to build up the networks and the low copper consumption during metallization. In particular, the high current density transport capability of the electrode of > 6000 A cm−2 was demonstrated. These superior properties of the vein-like structures inspire the design of high-performance transparent conductive electrodes without using critical materials and may significantly reduce the Ag consumption down to < 10% of the current level for mass production of solar cells and will contribute greatly to the electrode for high power density concentrator solar cells, high power density Li-ion batteries, and supercapacitors.[Figure not available: see fulltext.]. © 2020, © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Self-Assembled Graphene/MWCNT Bilayers as Platinum- Free Counter Electrode in Dye-Sensitized Solar Cells

2019, Wahyuono, Ruri Agung, Jia, Guobin, Plentz, Jonathan, Dellith, Andrea, Dellith, Jan, Herrmann-Westendorf, Felix, Seyring, Martin, Presselt, Martin, Andrä, Gudrun, Rettenmayr, Markus, Dietzek, Benjamin

We describe the preparation and properties of bilayers of graphene- and multi-walled carbon nanotubes (MWCNTs) as an alternative to conventionally used platinum-based counter electrode for dye-sensitized solar cells (DSSC). The counter electrodes were prepared by a simple and easy-to-implement double self-assembly process. The preparation allows for controlling the surface roughness of electrode in a layer-by-layer deposition. Annealing under N2 atmosphere improves the electrode's conductivity and the catalytic activity of graphene and MWCNTs to reduce the I3 − species within the electrolyte of the DSSC. The performance of different counter-electrodes is compared for ZnO photoanode-based DSSCs. Bilayer electrodes show higher power conversion efficiencies than monolayer graphene electrodes or monolayer MWCNTs electrodes. The bilayer graphene (bottom)/MWCNTs (top) counter electrode-based DSSC exhibits a maximum power conversion efficiency of 4.1 % exceeding the efficiency of a reference DSSC with a thin film platinum counter electrode (efficiency of 3.4 %). In addition, the double self-assembled counter electrodes are mechanically stable, which enables their recycling for DSSCs fabrication without significant loss of the solar cell performance. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Copper Iodide on Spacer Fabrics as Textile Thermoelectric Device for Energy Generation

2022, Schmidl, Gabriele, Jia, Guobin, Gawlik, Annett, Lorenz, Philipp, Zieger, Gabriel, Dellith, Jan, Diegel, Marco, Plentz, Jonathan

The integration of electronic functionalities into textiles for use as wearable sensors, energy harvesters, or coolers has become increasingly important in recent years. A special focus is on efficient thermoelectric materials. Copper iodide as a p-type thermoelectrically active, nontoxic material is attractive for energy harvesting and energy generation because of its transparency and possible high-power factor. The deposition of CuI on polyester spacer fabrics by wet chemical processes represents a great potential for use in textile industry for example as flexible thermoelectric energy generators in the leisure or industrial sector as well as in medical technologies. The deposited material on polyester yarn is investigated by electron microscopy, x-ray diffraction and by thermoelectric measurements. The Seebeck coefficient was observed between 112 and 153 µV/K in a temperature range between 30 °C and 90 °C. It is demonstrated that the maximum output power reached 99 nW at temperature difference of 65.5 K with respect to room temperature for a single textile element. However, several elements can be connected in series and the output power can be linear upscaled. Thus, CuI coated on 3D spacer fabrics can be attractive to fabricate thermoelectric devices especially in the lower temperature range for textile medical or leisure applications.

Loading...
Thumbnail Image
Item

Porous spherical gold nanoparticles via a laser induced process

2022, Schmidl, Gabriele, Raugust, Marc, Jia, Guobin, Dellith, Andrea, Dellith, Jan, Schmidl, Frank, Plentz, Jonathan

Nanoparticles consisting of a mixture of several metals and also porous nanoparticles due to their special structure exhibit properties that find applications in spectroscopic detection or catalysis. Different approaches of top down or bottom up technologies exist for the fabrication of such particles. We present a novel combined approach for the fabrication of spherical porous gold nanoparticles on low-cost glass substrates under ambient conditions using a UV-laser induced particle preparation process with subsequent wet chemical selective etching. In this preparation route, nanometer-sized branched structures are formed in spherical particles. The laser process, which is applied to a silver/gold bilayer system with different individual layer thicknesses, generates spherical mixed particles in a nanosecond range and influences the properties of the fabricated nanoparticles, such as the size and the mixture and thus the spectral response. The subsequent etching process is performed by selective wet chemical removal of silver from the nanoparticles with diluted nitric acid. The gold to silver ratio was investigated by energy-dispersive X-ray spectroscopy. The porosity depends on laser parameters and film thickness as well as on etching parameters such as time. After etching, the surface area of the remaining Au nanoparticles increases which makes these particles interesting for catalysis and also as carrier particles for substances. Such substances can be positioned at defined locations or be released in appropriate environments. Absorbance spectra are also analyzed to show how the altered fractured shape of the particles changes localized plasmon resonances of the resultingt particles.

Loading...
Thumbnail Image
Item

Large area graphene deposition on hydrophobic surfaces, flexible textiles, glass fibers, 3D structures, and adhesion of graphene layer

2019, Jia, Guobin, Plentz, Jonathan, Dellith, Jan, Dellith, Andrea, Wahyuono, Ruri Agung, Andrä, Gudrun

Graphene and its derivatives have many superior electrical, thermal, mechanical, chemical, and structural properties, and promise for many applications. One of the issues for scalable applications is the lack of a simple, reliable method that allows the deposit of a well-ordered monolayer using low-cost graphene flakes onto target substrates with different surface properties. Another issue is the adhesion of the deposited graphene thin film, which has not been well investigated yet. Following our former finding of a double self-assembly (DSA) process for efficient deposition of a monolayer of graphene flakes (MGFs), in this work we demonstrate that the DSA process can be applied even on very challenging samples including highly hydrophobic polytetrafluoroethylene (PTFE), flexible textiles, complex 3D objects, and thin glass fibers. Additionally, we tested adhesion of the graphene flakes on the flat glass substrate by scotch tape peel test of the MGFs. The results show that the graphene flakes adhere quite well on the flat glass substrate and most of the graphene flakes stay on the glass. These findings may trigger many large-scale applications of low-cost graphene feedstocks and other 2D materials.

Loading...
Thumbnail Image
Item

Aluminum-Doped Zinc Oxide Improved by Silver Nanowires for Flexible, Semitransparent and Conductive Electrodes on Textile with High Temperature Stability

2023, Hupfer, Maximilian Lutz, Gawlik, Annett, Dellith, Jan, Plentz, Jonathan

In order to facilitate the design freedom for the implementation of textile-integrated electronics, we seek flexible transparent conductive electrodes (TCEs) that can withstand not only the mechanical stresses encountered during use but also the thermal stresses of post-treatment. The transparent conductive oxides (TCO) typically used for this purpose are rigid in comparison to the fibers or textiles they are intended to coat. In this paper, a TCO, specifically aluminum-doped zinc oxide (Al:ZnO), is combined with an underlying layer of silver nanowires (Ag-NW). This combination brings together the advantages of a closed, conductive Al:ZnO layer and a flexible Ag-NW layer, forming a TCE. The result is a transparency of 20–25% (within the 400–800 nm range) and a sheet resistance of 10 Ω/sq that remains almost unchanged, even after post-treatment at 180 °C.

Loading...
Thumbnail Image
Item

Modification of Surface Bond Au Nanospheres by Chemically and Plasmonically Induced Pd Deposition

2021, Stolle, Heike Lisa Kerstin Stephanie, CsĂ¡ki, Andrea, Dellith, Jan, Fritzsche, Wolfgang

In this work we investigated methods of modifying gold nanospheres bound to a silicon surface by depositing palladium onto the surfaces of single nanoparticles. Bimetallic Au-Pd nanoparticles can thus be gained for use in catalysis or sensor technology. For Pd deposition, two methods were chosen. The first method was the reduction of palladium acetate by ascorbic acid, in which the amounts of palladium acetate and ascorbic acid were varied. In the second method we utilized light-induced metal deposition by making use of the plasmonic effect. Through this method, the surface bond nanoparticles were irradiated with light of wavelengths capable of inducing plasmon resonance. The generation of hot electrons on the particle surface then reduced the palladium acetate in the vicinity of the gold nanoparticle, resulting in palladium-covered gold nanospheres. In our studies we demonstrated the effect of both enhancement methods by monitoring the particle heights over enhancement time by atomic force microscopy (AFM), and investigated the influence of ascorbic acid/Pd acetate concentration as well as the impact of the irradiated wavelengths on the enhancement effect. It could thus be proven that both methods were valid for obtaining a deposition of Pd on the surface of the gold nanoparticles. Deposition of Pd on the gold particles using the light-assisted method could be observed, indicating the impact of the plasmonic effect and hot electron for Pd acetate reduction on the gold particle surface. In the case of the reduction method with ascorbic acid, in addition to Pd deposition on the gold nanoparticle surface, larger pure Pd particles and extended clusters were also generated. The reduction with ascorbic acid however led to a considerably thicker Pd layer of up to 54 nm in comparison to up to 11 nm for the light-induced metal deposition with light resonant to the particle absorption wavelength. Likewise, it could be demonstrated that light of non-resonant wavelengths was not capable of initiating Pd deposition, since a growth of only 1.6 nm (maximum) was observed for the Pd layer.

Loading...
Thumbnail Image
Item

Application of Thermal Response Measurements to Investigate Enhanced Water Adsorption Kinetics in Ball-Milled C2N-Type Materials

2022, Du, Shengjun, Leistenschneider, Desirée, Xiao, Jing, Dellith, Jan, Troschke, Erik, Oschatz, Martin

Sorption-based water capture is an attractive solution to provide potable water in arid regions. Heteroatom-decorated microporous carbons with hydrophilic character are promising candidates for water adsorption at low humidity, but the strong affinity between the polar carbon pore walls and water molecules can hinder the water transport within the narrow pore system. To reduce the limitations of mass transfer, C2N-type carbon materials obtained from the thermal condensation of a molecular hexaazatriphenylene-hexacarbonitrile (HAT-CN) precursor were treated mechanochemically via ball milling. Scanning electron microscopy as well as static light scattering reveal that large pristine C2N-type particles were split up to a smaller size after ball milling, thus increasing the pore accessibility which consequently leads to faster occupation of the water vapor adsorption sites. The major aim of this work is to demonstrate the applicability of thermal response measurements to track these enhanced kinetics of water adsorption. The adsorption rate constant of a C2N material condensed at 700 °C remarkably increased from 0.026 s−1 to 0.036 s−1 upon ball milling, while maintaining remarkably high water vapor capacity. This work confirms the advantages of small particle sizes in ultramicroporous materials on their vapor adsorption kinetics. It is demonstrated that thermal response measurements are a valuable and time-saving method to investigate water adsorption kinetics, capacities, and cycling stability.