Search Results

Now showing 1 - 10 of 15
  • Item
    All-optical supercontinuum switching
    (London : Springer Nature, 2020) Melchert, Oliver; Brée, Carsten; Tajalli, Ayhan; Pape, Alexander; Arkhipov, Rostislav; Willms, Stephanie; Babushkin, Ihar; Skryabin, Dmitry; Steinmeyer, Günter; Morgner, Uwe; Demircan, Ayhan
    Efficient all-optical switching is a challenging task as photons are bosons and cannot immediately interact with each other. Consequently, one has to resort to nonlinear optical interactions, with the Kerr gate being the classical example. However, the latter requires strong pulses to switch weaker ones. Numerous approaches have been investigated to overcome the resulting lack of fan-out capability of all-optical switches, most of which relied on types of resonant enhancement of light-matter interaction. Here we experimentally demonstrate a novel approach that utilizes switching between different portions of soliton fission induced supercontinua, exploiting an optical event horizon. This concept enables a high switching efficiency and contrast in a dissipation free setting. Our approach enables fan-out, does not require critical biasing, and is at least partially cascadable. Controlling complex soliton dynamics paves the way towards building all-optical logic gates with advanced functionalities. © 2020, The Author(s).
  • Item
    Ocean rogue waves and their phase space dynamics in the limit of a linear interference model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Birkholz, Simon; Brée, Carsten; Veselic, Ivan; Demircan, Ayhan; Steinmeyer, Günter
    We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability.
  • Item
    Accelerated rogue solitons triggered by background radiation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Morgner, Uwe; Steinmeyer, Günter
    [no abstract available]
  • Item
    Adjustable pulse compression scheme for generation of few-cycle pulses in the mid-infrared
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Morgner, Uwe; Steinmeyer, Günter
    An novel adjustable adiabatic soliton compression scheme is presented, enabling a coherent pulse source with pedestal-free few-cycle pulses in the infrared or mid-infrared regime. This scheme relies on interaction of a dispersive wave and a soliton copropagating at nearly identical group velocities in a fiber with enhanced infrared transmission. The compression is achieved directly in one stage, without necessity of an external compensation scheme. Numerical simulations are employed to demonstrate this scheme for silica and fluoride fibers, indicating ultimate limitations as well as the possibility of compression down to the single-cycle regime. Such output pulses appear ideally suited as seed sources for parametric amplification schemes in the mid-infrared.
  • Item
    Supercontinuum generation by multiple scatterings at a group velocity horizon
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Demircan, Ayhan; Amiranashvli, Shalva; Brée, Carsten; Morgner, Uwe; Steinmeyer, Günter
    A new scheme for supercontinuum generation covering more than one octave and exhibiting extraordinary high coherence properties has recently been proposed in Phys. Rev. Lett. 110, 233901 (2013). The scheme is based on two-pulse collision at a group velocity horizon between a dispersive wave and a soliton. Here we demonstrate that the same scheme can be exploited for the generation of supercontinua encompassing the entire transparency region of fused silica, ranging from 300 to 2300nm. At this bandwidth extension, the Raman effect becomes detrimental, yet may be compensated by using a cascaded collision process. Consequently, the high degree of coherence does not degrade even in this extreme scenario.
  • Item
    Self-compression of 120 fs pulses in a white-light filament
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Bethge, Jens; Steinmeyer, Günter; Stibenz, Gero; Staudt, Peter; Brée, Carsten; Demircan, Ayhan; Redlin, Harald; Düsterer, Stefan
    Self-compression of pulses with >100 fs input pulse duration from a 10 Hz laser system is experimentally demonstrated, with a compression factor of 3.3 resulting in output pulse durations of 35 fs. This measurement substantially widens the range of applicability of this compression method, enabling self-compression of pulsed laser sources that neither exhibit extremely low pulse-to-pulse energy fluctuations nor a particularly clean beam profile. The experimental demonstration is numerically modeled, revealing the exact same mechanisms at work as at shorter input pulse duration. Additionally, the role of controlled beam clipping with an adjustable aperture is numerically substantiated
  • Item
    Saturation of the all-optical Kerr effect
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Brée, Carsten; Demircan, Ayhan; Steinmeyer, Günter
    Saturation of the intensity dependence of the refractive index is directly computed from ionization rates via a Kramers-Kronig transform. The linear intensity dependence and its dispersion are found in excellent agreement with complete quantum mechanical orbital computations. Higher-order terms concur with solutions of the time-dependent Schrödinger equation. Expanding the formalism to all orders up to the ionization potential of the atom, we derive a model for saturation of the Kerr effect. This model widely confirms recently published and controversially discussed experimental data and corroborates the importance of higher-order Kerr terms for filamentation.
  • Item
    Rogue wave formation by accelerated solitons at an optical event horizon
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Mahnke, Christoph; Mitschke, Fedor; Steinmeyer, Günter
    Rogue waves, by definition, are rare events of extreme amplitude, but at the same time they are frequent in the sense that they can exist in a wide range of physical contexts. While many mechanisms have been demonstrated to explain the appearance of rogue waves in various specific systems, there is no known generic mechanism or general set of criteria shown to rule their appearance. Presupposing only the existence of a nonlinear Schrödinger-type equation together with a concave dispersion profile around a zero dispersion wavelength we demonstrate that solitons may experience acceleration and strong reshaping due to the interaction with continuum radiation, giving rise to extreme-value phenomena. The mechanism is independent of the optical Raman effect. A strong increase of the peak power is accompanied by a mild increase of the pulse energy and carrier frequency, whereas the photon number of the soliton remains practically constant. This reshaping mechanism is particularly robust and is naturally given in optics in the supercontinuum generation process.
  • Item
    Kramers-Kronig relations and high order nonlinear susceptibilities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Brée, Carsten; Demircan, Ayhan; Steinmeyer, Günter
    As previous theoretical results recently revealed, a Kramers-Kronig transform of multiphoton absorption rates allows for a precise prediction on the dispersion of the nonlinear refractive index $n_2$ in the near IR. It was shown that this method allows to reproduce recent experimental results on the importance of the higher-order Kerr effect. Extending these results, the current manuscript provides the dispersion of $n_2$ for all noble gases in excellent agreement with reference data. It is furthermore established that the saturation and inversion of the nonlinear refractive index is highly dispersive with wavelength, which indicates the existence of different filamentation regimes. While shorter laser wavelengths favor the well-established plasma clamping regime, the influence of the higher-order Kerr effect dominates in the long wavelength regime.
  • Item
    Cascaded self-compression of femtosecond pulses in filaments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Brée, Carsten; Bethge, Jens; Skupin, Stefan; Demircan, Ayhan; Steinmeyer, Günter
    Highly nonlinear wave propagation scenarios hold the potential to serve for energy concentration or pulse duration reduction of the input wave form, provided that a small range of input parameters be maintained. In particular when phenomena like rogue-wave formation or few-cycle optical pulses generation come into play, it becomes increasingly difficult to maintain control of the waveforms. Here we suggest an alternative approach towards the control of waveforms in a highly nonlinear system. Cascading pulse self-compression cycles at reduced nonlinearity limits the increase of input parameter sensitivity while still enabling an enhanced compression effect. This cascaded method is illustrated by experiments and in numerical simulations of the Nonlinear Schrödinger Equation, simulating the propagation of short optical pulses in a self-generated plasma.