Search Results

Now showing 1 - 2 of 2
  • Item
    Ocean rogue waves and their phase space dynamics in the limit of a linear interference model
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Birkholz, Simon; Brée, Carsten; Veselić, Ivan; Demircan, Ayhan; Steinmeyer, Günter
    We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these model assumptions no rogue waves appear when less than 10 elementary waves interfere with each other. Above this threshold rogue wave formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability.
  • Item
    Population difference gratings created on vibrational transitions by nonoverlapping subcycle THz pulses
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Arkhipov, Rostislav; Pakhomov, Anton; Arkhipov, Mikhail; Babushkin, Ihar; Demircan, Ayhan; Morgner, Uwe; Rosanov, Nikolay
    We study theoretically a possibility of creation and ultrafast control (erasing, spatial frequency multiplication) of population density gratings in a multi-level resonant medium having a resonance transition frequency in the THz range. These gratings are produced by subcycle THz pulses coherently interacting with a nonlinear medium, without any need for pulses to overlap, thereby utilizing an indirect pulse interaction via an induced coherent polarization grating. High values of dipole moments of the transitions in the THz range facilitate low field strength of the needed THz excitation. Our results clearly show this possibility in multi-level resonant media. Our theoretical approach is based on an approximate analytical solution of time-dependent Schrödinger equation (TDSE) using perturbation theory. Remarkably, as we show here, quasi-unipolar subcycle pulses allow more efficient excitation of higher quantum levels, leading to gratings with a stronger modulation depth. Numerical simulations, performed for THz resonances of the H20 molecule using Bloch equations for density matrix elements, are in agreement with analytical results in the perturbative regime. In the strong-field non-perturbative regime, the spatial shape of the gratings becomes non-harmonic. A possibility of THz radiation control using such gratings is discussed. The predicted phenomena open novel avenues in THz spectroscopy of molecules with unipolar and quasi-unipolar THz light bursts and allow for better control of ultra-short THz pulses.