Search Results

Now showing 1 - 2 of 2
  • Item
    Ab initio theory of plasmonic superconductivity within the Eliashberg and density-functional formalisms
    (Woodbury, NY : Inst., 2020) Davydov, A.; Sanna, A.; Pellegrini, C.; Dewhurst, J.K.; Sharma, S.; Gross, E.K.U.
    We extend the two leading methods for the ab initio computational description of phonon-mediated superconductors, namely Eliashberg theory and density-functional theory for superconductors (SCDFT), to include plasmonic effects. Furthermore, we introduce a hybrid formalism in which the Eliashberg approximation for the electron-phonon coupling is combined with the SCDFT treatment of the dynamically screened Coulomb interaction. The methods have been tested on a set of well-known conventional superconductors by studying how the plasmon contribution affects the phononic mechanism in determining the critical temperature (TC). Our simulations show that plasmonic SCDFT leads to a good agreement between predicted and measured TC's, whereas Eliashberg theory considerably overestimates the plasmon-mediated pairing and, therefore, TC. The hybrid approach, on the other hand, gives results close to SCDFT and overall in excellent agreement with experiments.
  • Item
    Ultrafast Optically Induced Ferromagnetic State in an Elemental Antiferromagnet
    (College Park, Md. : APS, 2021) Golias, E.; Kumberg, I.; Gelen, I.; Thakur, S.; Gördes, J.; Hosseinifar, R.; Guillet, Q.; Dewhurst, J.K.; Sharma, S.; Schüßler-Langeheine, C.; Pontius, N.; Kuch, W.
    We present evidence for an ultrafast optically induced ferromagnetic alignment of antiferromagnetic Mn in Co/Mn multilayers. We observe the transient ferromagnetic signal at the arrival of the pump pulse at the Mn L3 resonance using x-ray magnetic circular dichroism in reflectivity. The timescale of the effect is comparable to the duration of the excitation and occurs before the magnetization in Co is quenched. Theoretical calculations point to the imbalanced population of Mn unoccupied states caused by the Co interface for the emergence of this transient ferromagnetic state.