Search Results

Now showing 1 - 5 of 5
  • Item
    A Photoclick-Based High-Throughput Screening for the Directed Evolution of Decarboxylase OleT
    (Weinheim : Wiley-VCH, 2021) Markel, Ulrich; Lanvers, Pia; Sauer, Daniel F.; Wittwer, Malte; Dhoke, Gaurao V.; Davari, Mehdi D.; Schiffels, Johannes; Schwaneberg, Ulrich
    Enzymatic oxidative decarboxylation is an up-and-coming reaction yet lacking efficient screening methods for the directed evolution of decarboxylases. Here, we describe a simple photoclick assay for the detection of decarboxylation products and its application in a proof-of-principle directed evolution study on the decarboxylase OleT. The assay was compatible with two frequently used OleT operation modes (directly using hydrogen peroxide as the enzyme's co-substrate or using a reductase partner) and the screening of saturation mutagenesis libraries identified two enzyme variants shifting the enzyme's substrate preference from long chain fatty acids toward styrene derivatives. Overall, this photoclick assay holds promise to speed-up the directed evolution of OleT and other decarboxylases. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Engineering of Laccase CueO for Improved Electron Transfer in Bioelectrocatalysis by Semi-Rational Design
    (Weinheim : Wiley-VCH, 2020) Zhang, Lingling; Cui, Haiyang; Dhoke, Gaurao V.; Zou, Zhi; Sauer, Daniel F.; Davari, Mehdi D.; Schwaneberg, Ulrich
    Copper efflux oxidase (CueO) from Escherichia coli is a special bacterial laccase due to its fifth copper binding site. Herein, it is discovered that the fifth Cu occupancy plays a crucial and favorable role of electron relay in bioelectrocatalytic oxygen reduction. By substituting the residues at the four coordinated positions of the fifth Cu, 11 beneficial variants are identified with ≥2.5-fold increased currents at −250 mV (up to 6.13 mA cm−2). Detailed electrocatalytic characterization suggests the microenvironment of the fifth Cu binding site governs the electrocatalytic current of CueO. Additionally, further electron transfer analysis assisted by molecular dynamics (MD) simulation demonstrates that an increase in localized structural stability and a decrease of distance between the fifth Cu and the T1 Cu are two main factors contributing to the improved kinetics of CueO variants. It may guide a novel way to tailor laccases and perhaps other oxidoreductases for bioelectrocatalytic applications. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    One‐Pot Two‐Step Chemoenzymatic Cascade for the Synthesis of a Bis‐benzofuran Derivative
    (Weinheim : Wiley-VCH Verl., 2019) Mertens, M.A. Stephanie; Thomas, Fabian; Nöth, Maximilian; Moegling, Julian; El‐Awaad, Islam; Sauer, Daniel F.; Dhoke, Gaurao V.; Xu, Wenjing; Pich, Andrij; Herres‐Pawlis, Sonja; Schwaneberg, Ulrich
    Chemoenzymatic cascades enable reactions with the high productivity of chemocatalysts and high selectivity of enzymes. Nevertheless, the combination of these different fields of catalysis is prone to mutual deactivation of metal- and biocatalysts. In this study, a one-pot sequential two-step catalytic cascade reaction was successfully implemented for the synthesis of a methylene-bridged bis(2-substituted benzofuran). In the first step, a palladium-free Sonogashira reaction is used for the synthesis of a benzofuran derivative. In the subsequent step, the formed 2-substituted benzofuran is hydroxylated by the monooxygenase P450 BM3 variant (A74S-F87V-L188Q) and undergoes further elimination reactions. The study proofs that combination of Cu scorpionate catalyzed Sonogashira cross-coupling and P450 mediated oxidation is possible and results in up to 84 % yield of the final product. The oxidation reaction is boosted by capturing inhibiting reaction components.
  • Item
    Directed Evolution of P450 BM3 towards Functionalization of Aromatic O-Heterocycles
    (Basel : Molecular Diversity Preservation International (MDPI), 2019) Santos, Gustavo de Almeida; Dhoke, Gaurao V.; Davari, Mehdi D.; Ruff, Anna Joëlle; Schwaneberg, Ulrich
    The O-heterocycles, benzo-1,4-dioxane, phthalan, isochroman, 2,3-dihydrobenzofuran, benzofuran, and dibenzofuran are important building blocks with considerable medical application for the production of pharmaceuticals. Cytochrome P450 monooxygenase (P450) Bacillus megaterium 3 (BM3) wild type (WT) from Bacillus megaterium has low to no conversion of the six O-heterocycles. Screening of in-house libraries for active variants yielded P450 BM3 CM1 (R255P/P329H), which was subjected to directed evolution and site saturation mutagenesis of four positions. The latter led to the identification of position R255, which when introduced in the P450 BM3 WT, outperformed all other variants. The initial oxidation rate of nicotinamide adenine dinucleotide phosphate (NADPH) consumption increased ≈140-fold (WT: 8.3 ± 1.3 min−1; R255L: 1168 ± 163 min−1), total turnover number (TTN) increased ≈21-fold (WT: 40 ± 3; R255L: 860 ± 15), and coupling efficiency, ≈2.9-fold (WT: 8.8 ± 0.1%; R255L: 25.7 ± 1.0%). Computational analysis showed that substitution R255L (distant from the heme-cofactor) does not have the salt bridge formed with D217 in WT, which introduces flexibility into the I-helix and leads to a heme rearrangement allowing for efficient hydroxylation.
  • Item
    A hydroquinone-specific screening system for directed P450 evolution
    (Berlin ; Heidelberg ; New York : Springer, 2018) Weingartner, Alexandra M.; Sauer, Daniel F.; Dhoke, Gaurao V.; Davari, Mehdi D.; Ruff, Anna Joëlle; Schwaneberg, Ulrich
    The direct hydroxylation of benzene to hydroquinone (HQ) under mild reaction conditions is a challenging task for chemical catalysts. Cytochrome P450 (CYP) monooxygenases are known to catalyze the oxidation of a variety of aromatic compounds with atmospheric dioxygen. Protein engineering campaigns led to the identification of novel P450 variants, which yielded improvements in respect to activity, specificity, and stability. An effective screening strategy is crucial for the identification of improved enzymes with desired characteristics in large mutant libraries. Here, we report a first screening system designed for screening of P450 variants capable to produce hydroquinones. The hydroquinone quantification assay is based on the interaction of 4-nitrophenylacetonitrile (NpCN) with hydroquinones under alkaline conditions. In the 96-well plate format, a low detection limit (5 μM) and a broad linear detection range (5 to 250 μM) were obtained. The NpCN assay can be used for the quantification of dihydroxylated aromatic compounds such as hydroquinones, catechols, and benzoquinones. We chose the hydroxylation of pseudocumene by P450 BM3 as a target reaction and screened for improved trimethylhydroquinone (TMHQ) formation. The new P450 BM3 variant AW2 (R47Q, Y51F, I401M, A330P) was identified by screening a saturation mutagenesis library of amino acid position A330 with the NpCN assay. In summary, a 70-fold improved TMHQ formation was achieved with P450 BM3 AW2 when compared to the wild type (WT) and a 1.8-fold improved TMHQ formation compared to the recently reported P450 BM3 M3 (R47S, Y51W, A330F, I401M). © 2018, The Author(s).