Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Tropical and mid-latitude teleconnections interacting with the Indian summer monsoon rainfall: a theory-guided causal effect network approach

2020, Di Capua, Giorgia, Kretschmer, Marlene, Donner, Reik V., van den Hurk, Bart, Vellore, Ramesh, Krishnan, Raghavan, Coumou, Dim

The alternation of active and break phases in Indian summer monsoon (ISM) rainfall at intraseasonal timescales characterizes each ISM season. Both tropical and mid-latitude drivers influence this intraseasonal ISM variability. The circumglobal teleconnection observed in boreal summer drives intraseasonal variability across the mid-latitudes, and a two-way interaction between the ISM and the circumglobal teleconnection pattern has been hypothesized. We use causal discovery algorithms to test the ISM circumglobal teleconnection hypothesis in a causal framework. A robust causal link from the circumglobal teleconnection pattern and the North Atlantic region to ISM rainfall is identified, and we estimate the normalized causal effect (CE) of this link to be about 0.2 (a 1 standard deviation shift in the circumglobal teleconnection causes a 0.2 standard deviation shift in the ISM rainfall 1 week later). The ISM rainfall feeds back on the circumglobal teleconnection pattern, however weakly. Moreover, we identify a negative feedback between strong updraft located over India and the Bay of Bengal and the ISM rainfall acting at a biweekly timescale, with enhanced ISM rainfall following strong updraft by 1 week. This mechanism is possibly related to the boreal summer intraseasonal oscillation. The updraft has the strongest CE of 0.5, while the Madden–Julian oscillation variability has a CE of 0.2–0.3. Our results show that most of the ISM variability on weekly timescales comes from these tropical drivers, though the mid-latitude teleconnection also exerts a substantial influence. Identifying these local and remote drivers paves the way for improved subseasonal forecasts.

Loading...
Thumbnail Image
Item

Using Bayesian Networks to Investigate the Influence of Subseasonal Arctic Variability on Midlatitude North Atlantic Circulation

2021, Harwood, Nathanael, Hall, Richard, Di Capua, Giorgia, Russell, Andrew, Tucker, Allan

Recent enhanced warming and sea ice depletion in the Arctic have been put forward as potential drivers of severe weather in the midlatitudes. Evidence of a link between Arctic warming and midlatitude atmospheric circulation is growing, but the role of Arctic processes relative to other drivers remains unknown. Arctic–midlatitude connections in the North Atlantic region are particularly complex but important due to the frequent occurrence of severe winters in recent decades. Here, dynamic Bayesian networks with hidden variables are introduced to the field to assess their suitability for teleconnection analyses. Climate networks are constructed to analyze North Atlantic circulation variability at 5-day to monthly time scales during the winter months of the years 1981–2018. The inclusion of a number of Arctic, midlatitude, and tropical variables allows for an investigation into the relative role of Arctic influence compared to internal atmospheric variability and other remote drivers. A robust covariability between regions of amplified Arctic warming and two definitions of midlatitude circulation is found to occur entirely within winter at submonthly time scales. Hidden variables incorporated in networks represent two distinct modes of stratospheric polar vortex variability, capturing a periodic shift between average conditions and slower anomalous flow. The influence of the Barents–Kara Seas region on the North Atlantic Oscillation is found to be the strongest link at 5- and 10-day averages, while the stratospheric polar vortex strongly influences jet variability on monthly time scales.

Loading...
Thumbnail Image
Item

Meridionally Extending Anomalous Wave Train over Asia During Breaks in the Indian Summer Monsoon

2019, Umakanth, Uppara, Vellore, Ramesh K., Krishnan, R., Choudhury, Ayantika Dey, Bisht, Jagat S.H., Di Capua, Giorgia, Coumou, Dim, Donner, Reik V.

Anomalous interactions between the Indian summer monsoon (ISM) circulation and subtropical westerlies are known to trigger breaks in the ISM on subseasonal time-scales, characterised by a pattern of suppressed rainfall over central-north India, and enhanced rainfall over the foothills of the central–eastern Himalayas (CEH). An intriguing feature during ISM breaks is the formation of a mid-tropospheric cyclonic circulation anomaly extending over the subtropical and mid-latitude areas of the Asian continent. This study investigates the mechanism of the aforesaid Asian continental mid-tropospheric cyclonic circulation (ACMCC) anomaly using observations and simplified model experiments. The results of our study indicate that the ACMCC during ISM breaks is part of a larger meridional wave train comprising of alternating anticyclonic and cyclonic anomalies that extend poleward from the monsoon region to the Arctic. A lead–lag analysis of mid-tropospheric circulation anomalies suggests that the meridional wave-train generation is linked to latent heating (LH) anomalies over the CEH foothills, Indo-China, and the Indian landmass during ISM breaks. By conducting sensitivity experiments using a simplified global atmospheric general circulation model forced with satellite-derived three-dimensional LH, it is demonstrated that the combined effects of the enhanced LH over the CEH foothills and Indo-China and decreased LH over the Indian landmass during ISM breaks are pivotal for generating the poleward extending meridional wave train and the ACMCC anomaly. At the same time, the spatial extent of the mid-latitude cyclonic anomaly over Far-East Asia is also influenced by the anomalous LH over central–eastern China. While the present findings provide interesting insights into the role of LH anomalies during ISM breaks on the poleward extending meridional wave train, the ACMCC anomaly is found to have important ramifications on the daily rainfall extremes over the Indo-China region. It is revealed from the present analysis that the frequency of extreme rainfall occurrences over Indo-China shows a twofold increase during ISM break periods as compared to active ISM conditions. © 2019, The Author(s).