Search Results

Now showing 1 - 10 of 12
  • Item
    Unraveling the Light-Activated Reaction Mechanism in a Catalytically Competent Key Intermediate of a Multifunctional Molecular Catalyst for Artificial Photosynthesis
    (Weinheim : Wiley-VCH, 2019) Zedler, Linda; Mengele, Alexander Klaus; Ziems, Karl Michael; Zhang, Ying; Wächtler, Maria; Gr-fe, Stefanie; Pascher, Torbjörn; Rau, Sven; Kupfer, Stephan; Dietzek, Benjamin
    Understanding photodriven multielectron reaction pathways requires the identification and spectroscopic characterization of intermediates and their excited-state dynamics, which is very challenging due to their short lifetimes. To the best of our knowledge, this manuscript reports for the first time on in situ spectroelectrochemistry as an alternative approach to study the excited-state properties of reactive intermediates of photocatalytic cycles. UV/Vis, resonance-Raman, and transient-absorption spectroscopy have been employed to characterize the catalytically competent intermediate [(tbbpy)2RuII(tpphz)RhICp*] of [(tbbpy)2Ru(tpphz)Rh(Cp*)Cl]Cl(PF6)2 (Ru(tpphz)RhCp*), a photocatalyst for the hydrogenation of nicotinamide (NAD-analogue) and proton reduction, generated by electrochemical and chemical reduction. Electronic transitions shifting electron density from the activated catalytic center to the bridging tpphz ligand significantly reduce the catalytic activity upon visible-light irradiation. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Investigating light-induced processes in covalent dye-catalyst assemblies for hydrogen production
    (Basel : MDPI, 2020) Bold, Sebastian; Straistari, Tatiana; Muñoz-García, Ana B.; Pavone, Michele; Artero, Vincent; Chavarot-Kerlidou, Murielle; Dietzek, Benjamin
    The light-induced processes occurring in two dye-catalyst assemblies for light-driven hydrogen production were investigated by ultrafast transient absorption spectroscopy. These dyads consist of a push-pull organic dye based on a cyclopenta[1,2-b:5,4-b’]dithiophene (CPDT) bridge, covalently linked to two different H2-evolving cobalt catalysts. Whatever the nature of the latter, photoinduced intramolecular electron transfer from the excited state of the dye to the catalytic center was never observed. Instead, and in sharp contrast to the reference dye, a fast intersystem crossing (ISC) populates a long-lived triplet excited state, which in turn non-radiatively decays to the ground state. This study thus shows how the interplay of different structures in a dye-catalyst assembly can lead to unexpected excited state behavior and might open up new possibilities in the area of organic triplet sensitizers. More importantly, a reductive quenching mechanism with an external electron donor must be considered to drive hydrogen production with these dye-catalyst assemblies. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Intracellular Photophysics of an Osmium Complex bearing an Oligothiophene Extended Ligand
    (Weinheim : Wiley-VCH, 2020) Schneider, Kilian R.A.; Chettri, Avinash; Cole, Houston D.; Reglinski, Katharina; Breckmann, Jannik; Roque, John A. III; Stumper, Anne; Nauroozi, Djawed; Schmid, Sylvia; Lagerholm, Christoffer B.; Rau, Sven; Bäuerle, Peter; Eggeling, Christian; Cameron, Colin G.; McFarland, Sherri A.; Dietzek, Benjamin
    This contribution describes the excited-state properties of an Osmium-complex when taken up into human cells. The complex 1 [Os(bpy)2(IP-4T)](PF6)2 with bpy=2,2′-bipyridine and IP-4T=2-{5′-[3′,4′-diethyl-(2,2′-bithien-5-yl)]-3,4-diethyl-2,2′-bithiophene}imidazo[4,5-f][1,10]phenanthroline) can be discussed as a candidate for photodynamic therapy in the biological red/NIR window. The complex is taken up by MCF7 cells and localizes rather homogeneously within in the cytoplasm. To detail the sub-ns photophysics of 1, comparative transient absorption measurements were carried out in different solvents to derive a model of the photoinduced processes. Key to rationalize the excited-state relaxation is a long-lived 3ILCT state associated with the oligothiophene chain. This model was then tested with the complex internalized into MCF7 cells, since the intracellular environment has long been suspected to take big influence on the excited state properties. In our study of 1 in cells, we were able to show that, though the overall model remained the same, the excited-state dynamics are affected strongly by the intracellular environment. Our study represents the first in depth correlation towards ex-vivo and in vivo ultrafast spectroscopy for a possible photodrug. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Curcuminoid–BF2 complexes: Synthesis, fluorescence and optimization of BF2 group cleavage
    (Frankfurt a.M. : Beilstein-Institut, 2017) Weiß, Henning; Reichel, Jeannine; Görls, Helmar; Schneider, Kilian R.A.; Micheel, Mathias; Pröhl, Michael; Gottschaldt, Michael; Dietzek, Benjamin; Weigand, Wolfgang
    Eight difluoroboron complexes of curcumin derivatives carrying alkyne groups containing substituents have been synthesized following an optimised reaction pathway. The complexes were received in yields up to 98% and high purities. Their properties as fluorescent dyes have been investigated. Furthermore, a strategy for the hydrolysis of the BF2 group has been established using aqueous methanol and sodium hydroxide or triethylamine.
  • Item
    Yield—not only Lifetime—of the Photoinduced Charge-Separated State in Iridium Complex–Polyoxometalate Dyads Impact Their Hydrogen Evolution Reactivity
    (Weinheim : Wiley-VCH, 2020) Luo, Yusen; Maloul, Salam; Schönweiz, Stefanie; Wächtler, Maria; Streb, Carsten; Dietzek, Benjamin
    Covalently linked photosensitizer–polyoxometalate (PS-POM) dyads are promising molecular systems for light-induced energy conversion processes, such as “solar” hydrogen generation. To date, very little is known of their fundamental photophysical properties which affect the catalytic reactivity and stability of the systems. PS-POM dyads often feature short-lived photoinduced charge-separated states, and the lifetimes of these states are considered crucial for the function of PS-POM dyads in molecular photocatalysis. Hence, strategies have been developed to extend the lifetimes of the photoinduced charge-separated states, either by tuning the PS photophysics or by tuning the POM redox properties. Recently, some of us reported PS-POM dyads based on cyclometalated IrIII complexes covalently linked to Anderson-type polyoxometalate. Distinct hydrogen evolution reactivity (HER) of the dyads was observed, which was tuned by varying the central metal ion M of the POMM (M=Mn3+, Co3+, Fe3+). In this manuscript, the photoinduced electron-transfer processes in the three Ir-POMM dyads are investigated to rationalize the underlying reasons for the differences in HER activity observed. We report that upon excitation of the IrIII complex, ultrafast (sub-ps) charge separation occurs, leading to different amounts of the charge-separated states (Ir.+-POMM.−) generated in the different dyads. However, in all dyads studied, the resulting Ir.+-POMM.− species are short-lived (sub-ns) when compared to reference electron acceptors (e.g. porphyrins or fullerenes) reported in the literature. The reductive quenching of Ir.+-POMM.− by a sacrificial donor, triethyl amine (1 m), to generate the intermediate Ir-POMM.− is estimated to be very efficient (70–80 %) for all dyads studied. Based on this analyses, we conclude that the yield instead of the lifetime of the Ir.+-POMM.− charge-separated state determines the catalytic capacity of the dyads investigated. This new feature in the PS-POM photophysics could lead to new design criteria for the development of novel PS-POM dyads. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Polymeric Photoacids Based on Naphthols—Design Criteria, Photostability, and Light-Mediated Release
    (Weinheim : Wiley-VCH, 2019) Wendler, Felix; Sittig, Maria; Tom, Jessica C.; Dietzek, Benjamin; Schacher, Felix H.
    The implementation of photoswitches within polymers offers an exciting toolbox in the design of light-responsive materials as irradiation can be controlled both spatially and temporally. Herein, we introduce a range of water-soluble copolymers featuring naphthol-based chromophores as photoacids in the side chain. With that, the resulting materials experience a drastic increase in acidity upon stimulation with UV light and we systematically studied how structure and distance of the photoacid from the copolymer backbone determines polymerizability, photo-response, and photostability. Briefly, we used RAFT (reversible addition–fragmentation chain transfer) polymerization to prepare copolymers consisting of nona(ethylene glycol) methyl ether methacrylate (MEO9MA) as water-soluble comonomer in combination with six different 1-naphthol-based (“N”) monomers. Thereby, we distinguish between methacrylates (NMA, NOeMA), methacrylamides (NMAm, NOeMAm), vinyl naphthol (VN), and post-polymerization modification based on [(1-hydroxynaphthalen-2-amido)ethyl]amine (NOeMAm, NAmeMAm). These P(MEO9MAx-co-“N”y) copolymers typically feature a 4:1 MEO9MA to “N” ratio and molar masses in the range of 10 kg mol−1. After synthesis and characterization by using NMR spectroscopy and size exclusion chromatography (SEC), we investigated how potential photo-cleavage or photo-degradation during irradiation depends on the type and distance of the linker to the copolymeric backbone and whether reversible excited state proton transfer (ESPT) occurs under these conditions. In our opinion, such materials will be strong assets as light-mediated proton sources in nanostructured environments, for example, for the site-specific creation of proton gradients. We therefore exemplarily incorporated NMA into an amphiphilic block copolymer and could demonstrate the light-mediated release of Nile red from micelles formed in water as selective solvent. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Block Copolymers Featuring Highly Photostable Photoacids Based on Vinylnaphthol: Synthesis and Self-Assembly
    (Weinheim : Wiley-VCH, 2020) Wendler, Felix; Tom, Jessica C.; Sittig, Maria; Biehl, Philip; Dietzek, Benjamin; Schacher, Felix H.
    The synthesis of a photoresponsive amphiphilic diblock quarterpolymer containing 5-vinyl-1-naphthol (VN) as a photostable photoacidic comonomer is presented. The preparation is realized via a sequential reversible addition fragmentation chain transfer (RAFT) polymerization starting from a nona(ethylene glycol) methyl ether methacrylate (MEO9MA/“O”) hydrophilic block, which is then used as a macro-RAFT agent in the terpolymerization of styrene (S), 2-vinylpyridine (2VP), and TBS-protected VN (tVN). The terpolymerization proceeds in a controlled fashion and two diblock quarterpolymers, P(Om)-b-P(Sx-co-2VPy-co-VNz), with varying functional comonomer compositions are prepared. These diblock quarterpolymers form spherical core-corona micelles in aqueous media according to dynamic light scattering (DLS) and cryogenic transmission electron microscopy (cryo-TEM). Upon irradiation, the photoacids within the micellar core experience a drastic increase in acidity causing a proton transfer from the photoacid to neighboring 2VP units. As a result, the hydrophilic/hydrophobic balance of the entire assembly is shifted, and the encapsulated cargo is released. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Water-Soluble Polymeric Carbon Nitride Colloidal Nanoparticles for Highly Selective Quasi-Homogeneous Photocatalysis
    (Weinheim : Wiley-VCH, 2019) Krivtsov, Igor; Mitoraj, Dariusz; Adler, Christiane; Ilkaeva, Marina; Sardo, Mariana; Mafra, Luis; Neumann, Christof; Turchanin, Andrey; Li, Chunyu; Dietzek, Benjamin; Leiter, Robert; Biskupek, Johannes; Kaiser, Ute; Im, Changbin; Kirchhoff, Björn; Jacob, Timo; Beranek, Radim
    Heptazine-based polymeric carbon nitrides (PCN) are promising photocatalysts for light-driven redox transformations. However, their activity is hampered by low surface area resulting in low concentration of accessible active sites. Herein, we report a bottom-up preparation of PCN nanoparticles with a narrow size distribution (ca. 10±3 nm), which are fully soluble in water showing no gelation or precipitation over several months. They allow photocatalysis to be carried out under quasi-homogeneous conditions. The superior performance of water-soluble PCN, compared to conventional solid PCN, is shown in photocatalytic H2O2 production via reduction of oxygen accompanied by highly selective photooxidation of 4-methoxybenzyl alcohol and benzyl alcohol or lignocellulose-derived feedstock (ethanol, glycerol, glucose). The dissolved photocatalyst can be easily recovered and re-dissolved by simple modulation of the ionic strength of the medium, without any loss of activity and selectivity. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Photophysics of BODIPY dyes as readily designable photosensitisers in light-driven proton reduction
    (Basel : MDPI, 2017) Dura, Laura; Wächtler, Maria; Kupfer, Stephan; Kübel, Joachim; Ahrens, Johannes; Höfler, Sebastian; Bröring, Martin; Dietzek, Benjamin; Beweries, Torsten
    A series of boron dipyrromethene (BODIPY) dyes was tested as photosensitisers for light-driven hydrogen evolution in combination with the complex [Pd(PPh3)Cl2]2 as a source for catalytically-active Pd nanoparticles and triethylamine as a sacrificial electron donor. In line with earlier reports, halogenated dyes showed significantly higher hydrogen production activity. All BODIPYs were fully characterised using stationary absorption and emission spectroscopy. Time-resolved spectroscopic investigations on meso-mesityl substituted compounds revealed that reduction of the photo-excited BODIPY by the sacrificial agent occurs from an excited singlet state, while, in halogenated species, long-lived triplet states are present, determining electron transfer processes from the sacrificial agent. Quantum chemical calculations performed at the time-dependent density functional level of theory indicate that the differences in the photocatalytic performance of the present series of dyes can be correlated to the varying efficiency of intersystem crossing in non-halogenated and halogenated species and not to alterations in the energy levels introduced upon substitution.
  • Item
    Structure of Diethyl-Phosphonic Acid Anchoring Group Affects the Charge-Separated State on an Iridium(III) Complex Functionalized NiO Surface
    (Weinheim : Wiley-VCH, 2020) Wahyuono, Ruri Agung; Amthor, Sebastian; Müller, Carolin; Rau, Sven; Dietzek, Benjamin
    Cyclometalated Iridium(III) complexes, i. e. [Ir(C N)2(dppz)][PF6], bearing either two or four -CH2PO(OH)2 anchoring groups (IrP2dppz or IrP4dppz) are explored as photosensitizers for p-type dye sensitized solar cell (DSSC). The synthetic route is described and the iridium(III) complexes are characterized with respect to their electrochemical and photophysical properties. The modified anchoring ligand geometry exploited in this work not only alters the electronic nature of the complex (that is by destabilizing the LUMO energetically) but more importantly improves the grafting ability of the complex towards the NiO surface. The photoinduced long-lived charge separated state (CSS) at the NiO|IrPxdppz interface is of a different nature comparing the two complexes. For IrP2dppz and IrP4dppz the electron density of the CSS dominantly resides on the dppz and the C N ligand, respectively. The stability of the CSS can be correlated to the solar cell performance in NiO-based p-DSSCs, which yield conversion efficiencies which are among the highest in the class of iridium(III) complexes developed for p-DSSCs. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.