Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

Curcuminoid–BF2 complexes: Synthesis, fluorescence and optimization of BF2 group cleavage

2017, Weiß, Henning, Reichel, Jeannine, Görls, Helmar, Schneider, Kilian R.A., Micheel, Mathias, Pröhl, Michael, Gottschaldt, Michael, Dietzek, Benjamin, Weigand, Wolfgang

Eight difluoroboron complexes of curcumin derivatives carrying alkyne groups containing substituents have been synthesized following an optimised reaction pathway. The complexes were received in yields up to 98% and high purities. Their properties as fluorescent dyes have been investigated. Furthermore, a strategy for the hydrolysis of the BF2 group has been established using aqueous methanol and sodium hydroxide or triethylamine.

Loading...
Thumbnail Image
Item

In situ spectroelectrochemical and theoretical study on the oxidation of a 4H-imidazole-ruthenium dye adsorbed on nanocrystalline TiO2 thin film electrodes

2015, Zhang, Ying, Kupfer, Stephan, Zedler, Linda, Schindler, Julian, Bocklitz, Thomas, Guthmuller, Julien, Rau, Sven, Dietzek, Benjamin

Terpyridine 4H-imidazole-ruthenium(II) complexes are considered promising candidates for use as sensitizers in dye sensitized solar cells (DSSCs) by displaying broad absorption in the visible range, where the dominant absorption features are due to metal-to-ligand charge transfer (MLCT) transitions. The ruthenium(III) intermediates resulting from photoinduced MLCT transitions are essential intermediates in the photoredox-cycle of the DSSC. However, their photophysics is much less studied compared to the ruthenium(II) parent systems. To this end, the structural alterations accompanying one-electron oxidation of the RuIm dye series (including a non-carboxylic RuIm precursor, and, carboxylic RuImCOO in solution and anchored to a nanocrystalline TiO2 film) are investigated via in situ experimental and theoretical UV-Vis absorption and resonance Raman (RR) spectroelectrochemistry. The excellent agreement between the experimental and the TDDFT spectra derived in this work allows for an in-depth assignment of UV-Vis and RR spectral features of the dyes. A concordant pronounced wavelength dependence with respect to the charge transfer character has been observed for the model system RuIm, and both RuImCOO in solution and attached on the TiO2 surface. Excitation at long wavelengths leads to the population of ligand-to-metal charge transfer states, i.e. photoreduction of the central ruthenium(III) ion, while high-energy excitation features an intra-ligand charge transfer state localized on the 4H-imidazole moiety. Therefore, these 4H-imidazole ruthenium complexes investigated here are potential multi-photoelectron donors. One electron is donated from MLCT states, and additionally, the 4H-imidazole ligand reveals electron-donating character with a significant contribution to the excited states of the ruthenium(III) complexes upon blue-light irradiation.

Loading...
Thumbnail Image
Item

A comprehensive comparison of dye-sensitized NiO photocathodes for solar energy conversion

2015, Wood, Christopher J., Summers, Gareth H., Clark, Charlotte A., Kaeffer, Nicolas, Braeutigam, Maximilian, Carbone, Lea Roberta, D'Amario, Luca, Fan, Ke, Farré, Yoann, Narbey, Stéphanie, Oswald, Frédéric, Stevens, Lee A., Parmenter, Christopher D.J., Fay, Michael W., La Torre, Alessandro, Snape, Colin E., Dietzek, Benjamin, Dini, Danilo, Hammarström, Leif, Pellegrin, Yann, Odobel, Fabrice, Sun, Licheng, Artero, Vincent, Gibson, Elizabeth A.

We investigated a range of different mesoporous NiO electrodes prepared by different research groups and private firms in Europe to determine the parameters which influence good quality photoelectrochemical devices. This benchmarking study aims to solve some of the discrepancies in the literature regarding the performance of p-DSCs due to differences in the quality of the device fabrication. The information obtained will lay the foundation for future photocatalytic systems based on sensitized NiO so that new dyes and catalysts can be tested with a standardized material. The textural and electrochemical properties of the semiconducting material are key to the performance of photocathodes. We found that both commercial and non-commercial NiO gave promising solar cell and water-splitting devices. The NiO samples which had the two highest solar cell efficiency (0.145% and 0.089%) also gave the best overall theoretical H2 conversion.

Loading...
Thumbnail Image
Item

ZnO nanoflowers-based photoanodes: aqueous chemical synthesis, microstructure and optical properties

2016, Wahyuono, Ruri Agung, Schmidt, Christa, Dellith, Andrea, Dellith, Jan, Schulz, Martin, Seyring, Martin, Rettenmayr, Markus, Plentz, Jonathan, Dietzek, Benjamin

We have developed an efficient, low temperature, synthetic route for ZnO nanoflowers (NFs) as photoanode material. This alternative route yields small flowerlike nanostructures, built from densely self-assembled tip-ended rod structures. The obtained ZnO NFs possess a large bandgap of 3.27 - 3.39 eV, enabling the generation of an average open current voltage of 0.56 V. Additionally, they show a high internal light harvesting of 14.6•10-7A-mol-1. The growth mechanism and self-assembly of ZnO NFs were studied in detail by joint spectroscopic-TEM investigations. It is shown that the ZnO crystallite size increases with increasing annealing temperatures and that the stress and the improved crystallinity are induced by annealing and reduce the lattice strain and the dislocation density. The bandgaps of ZnO are affected by the lattice strain revealing an optimal region of lattice strain to gain high bandgap energies. The properties of the synthesized ZnO NFs are compared with other morphologies, i.e. ZnO spherical aggregates (SPs) and ZnO nanorods (NRs), and are tested as electrode materials in dye-sensitized solar cells.

Loading...
Thumbnail Image
Item

Mitochondria Targeted Protein-Ruthenium Photosensitizer for Efficient Photodynamic Applications

2017, Chakrabortty, Sabyasachi, Agrawalla, Bikram Keshari, Stumper, Anne, Vegi, Naidu M., Fischer, Stephan, Reichardt, Christian, Kögler, Michael, Dietzek, Benjamin, Feuring-Buske, Michaela, Buske, Christian, Rau, Sven, Weil, Tanja

Organelle-targeted photosensitization represents a promising approach in photodynamic therapy where the design of the active photosensitizer (PS) is very crucial. In this work, we developed a macromolecular PS with multiple copies of mitochondria-targeting groups and ruthenium complexes that displays highest phototoxicity toward several cancerous cell lines. In particular, enhanced anticancer activity was demonstrated in acute myeloid leukemia cell lines, where significant impairment of proliferation and clonogenicity occurs. Finally, attractive two-photon absorbing properties further underlined the great significance of this PS for mitochondria targeted PDT applications in deep tissue cancer therapy.

Loading...
Thumbnail Image
Item

Hole injection dynamics from two structurally related Ru-bipyridine complexes into NiOx is determined by the substitution pattern of the ligands

2015, Bräutigam, Maximilian, Kübel, Joachim, Schulz, Martin, Vos, Johannes G., Dietzek, Benjamin

The dyes bis[2,2′-bipyridine][4,4′-dicarboxy-2,2′-bipyridine]ruthenium(II) dihexafluorophosphate, [Ru(bpy)2dcb](PF6)2 (Ru1), and tris[4,4′-bis(ethylcarboxy)-2,2′-bipyridine]ruthenium(II) dihexafluorophosphate, [Ru(dceb)3](PF6)2 (Ru2), attached to NiOx nanoparticle films were investigated using transient absorption and luminescence spectroscopy. In acetonitrile solution the dyes reveal very similar physical and chemical properties, i.e. both dyes exhibit comparable ground state and long-lived, broad excited state absorption. However, when immobilized onto a NiOx surface the photophysical properties of the two dyes differ significantly. For Ru1 luminescence is observed, which decays within 18 ns and ultrafast transient absorption measurements do not show qualitative differences from the photophysics of Ru1 in solution. In contrast to this the luminescence of photoexcited Ru2 on NiOx is efficiently quenched and the ultrafast transient absorption spectra reveal the formation of oxidized nickel centres overlaid by the absorption of the reduced dye Ru2 with a characteristic time-constant of 18 ps. These findings are attributed to the different localization of the initially photoexcited state in Ru1 and Ru2. Due to the inductive effect (−I) of the carboxylic groups, the lowest energy excited state in Ru1 is localized on the dicarboxy-bipyridine ligand, which is bound to the NiOx surface. In Ru2, on the other hand, the initially populated excited state is localized on the ester-substituted ligands, which are not bound to the semiconductor surface. Hence, the excess charge density that is abstracted from the Ru-ion in the metal-to-ligand charge-transfer transition is shifted away from the NiOx surface, which ultimately facilitates hole transfer into the semiconductor.

Loading...
Thumbnail Image
Item

Fluorosolvatochromism of furanyl- and thiophenyl-substituted acetophenones

2015, Friebe, Nadine, Schreiter, Katja, Kübel, Joachim, Dietzek, Benjamin, Moszner, Norbert, Burtscher, Peter, Oehlke, Alexander, Spange, Stefan

A series of para-substituted acetophenones bearing a furanyl or a thiophenyl moiety show a large Stokes-shift, which is a function of various solvent properties. Photophysical properties such as emission lifetime of the compounds have been determined using time-correlated-single photon counting to secure the intrinsic fluorescence behaviour. The solvent dependent position of the UV/Vis emission band [small nu, Greek, tilde]max,em of the compounds has been measured in 26 various solvents. The influence of the solvent on [small nu, Greek, tilde]max,em is of very complex nature and mathematically analysed by multiple square linear solvation energy (LSE)-correlation analysis using Catalán's four-solvent parameter set. Solvent acidity has a strong influence on the bathochromic shift of 2,5-disubstituted furan derivatives compared to the non-5-substituted furan and thiophene derivatives, which show a contrary behaviour. Therefore, the 5-cyanofuranyl-substituted acetophenone derivative is useful as a probe for measuring environmental properties by fluorescence spectroscopy.

Loading...
Thumbnail Image
Item

An artificial photosynthetic system for photoaccumulation of two electrons on a fused dipyridophenazine (dppz)-pyridoquinolinone ligand

2018, Lefebvre, Jean-François, Schindler, Julian, Traber, Philipp, Zhang, Ying, Kupfer, Stephan, Gräfe, Stefanie, Baussanne, Isabelle, Demeunynck, Martine, Mouesca, Jean-Marie, Gambarelli, Serge, Artero, Vincent, Dietzek, Benjamin, Chavarot-Kerlidou, Murielle

Increasing the efficiency of molecular artificial photosynthetic systems is mandatory for the construction of functional devices for solar fuel production. Decoupling the light-induced charge separation steps from the catalytic process is a promising strategy, which can be achieved thanks to the introduction of suitable electron relay units performing charge accumulation. We report here on a novel ruthenium tris-diimine complex able to temporarily store two electrons on a fused dipyridophenazine-pyridoquinolinone π-extended ligand upon visible-light irradiation in the presence of a sacrificial electron donor. Full characterization of this compound and of its singly and doubly reduced derivatives thanks to resonance Raman, EPR and (TD)DFT studies allowed us to localize the two electron-storage sites and to relate charge photoaccumulation with proton-coupled electron transfer processes.

Loading...
Thumbnail Image
Item

Energy transfer and formation of long-lived 3MLCT states in multimetallic complexes with extended highly conjugated bis-terpyridyl ligands

2015, Wächtler, Maria, Kübel, Joachim, Barthelmes, Kevin, Winter, Andreas, Schmiedel, Alexander, Pascher, Torbjörn, Lambert, Christoph, Schubert, Ulrich S., Dietzek, Benjamin

Multimetallic complexes with extended and highly conjugated bis-2,2′:6′,2′′-terpyridyl bridging ligands, which present building blocks for coordination polymers, are investigated with respect to their ability to act as light-harvesting antennae. The investigated species combine Ru(II)- with Os(II)- and Fe(II)-terpyridyl chromophores, the latter acting as energy sinks. Due to the extended conjugated system the ligands are able to prolong the lifetime of the 3MLCT states compared to unsubstituted terpyridyl species by delocalization and energetic stabilization of the 3MLCT states. This concept is applied for the first time to Fe(II) terpyridyl species and results in an exceptionally long lifetime of 23 ps for the Fe(II) 3MLCT state. While partial energy (>80%) transfer is observed between the Ru(II) and Fe(II) centers with a time-constant of 15 ps, excitation energy is transferred completely from the Ru(II) to the Os(II) center within the first 200 fs after excitation.

Loading...
Thumbnail Image
Item

Photophysics of BODIPY dyes as readily designable photosensitisers in light-driven proton reduction

2017, Dura, Laura, Wächtler, Maria, Kupfer, Stephan, Kübel, Joachim, Ahrens, Johannes, Höfler, Sebastian, Bröring, Martin, Dietzek, Benjamin, Beweries, Torsten

A series of boron dipyrromethene (BODIPY) dyes was tested as photosensitisers for light-driven hydrogen evolution in combination with the complex [Pd(PPh3)Cl2]2 as a source for catalytically-active Pd nanoparticles and triethylamine as a sacrificial electron donor. In line with earlier reports, halogenated dyes showed significantly higher hydrogen production activity. All BODIPYs were fully characterised using stationary absorption and emission spectroscopy. Time-resolved spectroscopic investigations on meso-mesityl substituted compounds revealed that reduction of the photo-excited BODIPY by the sacrificial agent occurs from an excited singlet state, while, in halogenated species, long-lived triplet states are present, determining electron transfer processes from the sacrificial agent. Quantum chemical calculations performed at the time-dependent density functional level of theory indicate that the differences in the photocatalytic performance of the present series of dyes can be correlated to the varying efficiency of intersystem crossing in non-halogenated and halogenated species and not to alterations in the energy levels introduced upon substitution.