Search Results

Now showing 1 - 10 of 16
  • Item
    Determination of side products in the photocatalytic generation of hydrogen with copper photosensitizers by resonance Raman spectroelectrochemistry
    (London : RSC Publishing, 2016) Zhang, Ying; Heberle, Martin; Wächtler, Maria; Karnahl, Michael; Dietzek, Benjamin
    A combination of UV-Vis and resonance Raman spectroscopy in conjunction with electrochemistry is employed to reveal the nature of a side product formed when using heteroleptic Cu(I)-photosensitizers [(P^P)Cu(N^N)]+ for photocatalytic hydrogen generation. It is shown that homoleptic [Cu(N^N)2]+ complexes are formed under oxidative conditions confirming a proposed deactivation pathway.
  • Item
    Hole injection dynamics from two structurally related Ru-bipyridine complexes into NiOx is determined by the substitution pattern of the ligands
    (Cambridge : RSC Publ., 2015) Bräutigam, Maximilian; Kübel, Joachim; Schulz, Martin; Vos, Johannes G.; Dietzek, Benjamin
    The dyes bis[2,2′-bipyridine][4,4′-dicarboxy-2,2′-bipyridine]ruthenium(II) dihexafluorophosphate, [Ru(bpy)2dcb](PF6)2 (Ru1), and tris[4,4′-bis(ethylcarboxy)-2,2′-bipyridine]ruthenium(II) dihexafluorophosphate, [Ru(dceb)3](PF6)2 (Ru2), attached to NiOx nanoparticle films were investigated using transient absorption and luminescence spectroscopy. In acetonitrile solution the dyes reveal very similar physical and chemical properties, i.e. both dyes exhibit comparable ground state and long-lived, broad excited state absorption. However, when immobilized onto a NiOx surface the photophysical properties of the two dyes differ significantly. For Ru1 luminescence is observed, which decays within 18 ns and ultrafast transient absorption measurements do not show qualitative differences from the photophysics of Ru1 in solution. In contrast to this the luminescence of photoexcited Ru2 on NiOx is efficiently quenched and the ultrafast transient absorption spectra reveal the formation of oxidized nickel centres overlaid by the absorption of the reduced dye Ru2 with a characteristic time-constant of 18 ps. These findings are attributed to the different localization of the initially photoexcited state in Ru1 and Ru2. Due to the inductive effect (−I) of the carboxylic groups, the lowest energy excited state in Ru1 is localized on the dicarboxy-bipyridine ligand, which is bound to the NiOx surface. In Ru2, on the other hand, the initially populated excited state is localized on the ester-substituted ligands, which are not bound to the semiconductor surface. Hence, the excess charge density that is abstracted from the Ru-ion in the metal-to-ligand charge-transfer transition is shifted away from the NiOx surface, which ultimately facilitates hole transfer into the semiconductor.
  • Item
    Energy transfer and formation of long-lived 3MLCT states in multimetallic complexes with extended highly conjugated bis-terpyridyl ligands
    (Cambridge : RSC Publ., 2015) Wächtler, Maria; Kübel, Joachim; Barthelmes, Kevin; Winter, Andreas; Schmiedel, Alexander; Pascher, Torbjörn; Lambert, Christoph; Schubert, Ulrich S.; Dietzek, Benjamin
    Multimetallic complexes with extended and highly conjugated bis-2,2′:6′,2′′-terpyridyl bridging ligands, which present building blocks for coordination polymers, are investigated with respect to their ability to act as light-harvesting antennae. The investigated species combine Ru(II)- with Os(II)- and Fe(II)-terpyridyl chromophores, the latter acting as energy sinks. Due to the extended conjugated system the ligands are able to prolong the lifetime of the 3MLCT states compared to unsubstituted terpyridyl species by delocalization and energetic stabilization of the 3MLCT states. This concept is applied for the first time to Fe(II) terpyridyl species and results in an exceptionally long lifetime of 23 ps for the Fe(II) 3MLCT state. While partial energy (>80%) transfer is observed between the Ru(II) and Fe(II) centers with a time-constant of 15 ps, excitation energy is transferred completely from the Ru(II) to the Os(II) center within the first 200 fs after excitation.
  • Item
    Fluorosolvatochromism of furanyl- and thiophenyl-substituted acetophenones
    (London : RSC, 2015) Friebe, Nadine; Schreiter, Katja; Kübel, Joachim; Dietzek, Benjamin; Moszner, Norbert; Burtscher, Peter; Oehlke, Alexander; Spange, Stefan
    A series of para-substituted acetophenones bearing a furanyl or a thiophenyl moiety show a large Stokes-shift, which is a function of various solvent properties. Photophysical properties such as emission lifetime of the compounds have been determined using time-correlated-single photon counting to secure the intrinsic fluorescence behaviour. The solvent dependent position of the UV/Vis emission band [small nu, Greek, tilde]max,em of the compounds has been measured in 26 various solvents. The influence of the solvent on [small nu, Greek, tilde]max,em is of very complex nature and mathematically analysed by multiple square linear solvation energy (LSE)-correlation analysis using Catalán's four-solvent parameter set. Solvent acidity has a strong influence on the bathochromic shift of 2,5-disubstituted furan derivatives compared to the non-5-substituted furan and thiophene derivatives, which show a contrary behaviour. Therefore, the 5-cyanofuranyl-substituted acetophenone derivative is useful as a probe for measuring environmental properties by fluorescence spectroscopy.
  • Item
    ZnO nanoflowers-based photoanodes: aqueous chemical synthesis, microstructure and optical properties
    (Berlin : de Gruyter, 2016) Wahyuono, Ruri Agung; Schmidt, Christa; Dellith, Andrea; Dellith, Jan; Schulz, Martin; Seyring, Martin; Rettenmayr, Markus; Plentz, Jonathan; Dietzek, Benjamin
    We have developed an efficient, low temperature, synthetic route for ZnO nanoflowers (NFs) as photoanode material. This alternative route yields small flowerlike nanostructures, built from densely self-assembled tip-ended rod structures. The obtained ZnO NFs possess a large bandgap of 3.27 - 3.39 eV, enabling the generation of an average open current voltage of 0.56 V. Additionally, they show a high internal light harvesting of 14.6•10-7A-mol-1. The growth mechanism and self-assembly of ZnO NFs were studied in detail by joint spectroscopic-TEM investigations. It is shown that the ZnO crystallite size increases with increasing annealing temperatures and that the stress and the improved crystallinity are induced by annealing and reduce the lattice strain and the dislocation density. The bandgaps of ZnO are affected by the lattice strain revealing an optimal region of lattice strain to gain high bandgap energies. The properties of the synthesized ZnO NFs are compared with other morphologies, i.e. ZnO spherical aggregates (SPs) and ZnO nanorods (NRs), and are tested as electrode materials in dye-sensitized solar cells.
  • Item
    Mitochondria Targeted Protein-Ruthenium Photosensitizer for Efficient Photodynamic Applications
    (Washington, DC : ACS Publications, 2017) Chakrabortty, Sabyasachi; Agrawalla, Bikram Keshari; Stumper, Anne; Vegi, Naidu M.; Fischer, Stephan; Reichardt, Christian; Kögler, Michael; Dietzek, Benjamin; Feuring-Buske, Michaela; Buske, Christian; Rau, Sven; Weil, Tanja
    Organelle-targeted photosensitization represents a promising approach in photodynamic therapy where the design of the active photosensitizer (PS) is very crucial. In this work, we developed a macromolecular PS with multiple copies of mitochondria-targeting groups and ruthenium complexes that displays highest phototoxicity toward several cancerous cell lines. In particular, enhanced anticancer activity was demonstrated in acute myeloid leukemia cell lines, where significant impairment of proliferation and clonogenicity occurs. Finally, attractive two-photon absorbing properties further underlined the great significance of this PS for mitochondria targeted PDT applications in deep tissue cancer therapy.
  • Item
    Curcuminoid–BF2 complexes: Synthesis, fluorescence and optimization of BF2 group cleavage
    (Frankfurt a.M. : Beilstein-Institut, 2017) Weiß, Henning; Reichel, Jeannine; Görls, Helmar; Schneider, Kilian R.A.; Micheel, Mathias; Pröhl, Michael; Gottschaldt, Michael; Dietzek, Benjamin; Weigand, Wolfgang
    Eight difluoroboron complexes of curcumin derivatives carrying alkyne groups containing substituents have been synthesized following an optimised reaction pathway. The complexes were received in yields up to 98% and high purities. Their properties as fluorescent dyes have been investigated. Furthermore, a strategy for the hydrolysis of the BF2 group has been established using aqueous methanol and sodium hydroxide or triethylamine.
  • Item
    An artificial photosynthetic system for photoaccumulation of two electrons on a fused dipyridophenazine (dppz)-pyridoquinolinone ligand
    (Cambridge : RSC Publishing, 2018) Lefebvre, Jean-François; Schindler, Julian; Traber, Philipp; Zhang, Ying; Kupfer, Stephan; Gräfe, Stefanie; Baussanne, Isabelle; Demeunynck, Martine; Mouesca, Jean-Marie; Gambarelli, Serge; Artero, Vincent; Dietzek, Benjamin; Chavarot-Kerlidou, Murielle
    Increasing the efficiency of molecular artificial photosynthetic systems is mandatory for the construction of functional devices for solar fuel production. Decoupling the light-induced charge separation steps from the catalytic process is a promising strategy, which can be achieved thanks to the introduction of suitable electron relay units performing charge accumulation. We report here on a novel ruthenium tris-diimine complex able to temporarily store two electrons on a fused dipyridophenazine-pyridoquinolinone π-extended ligand upon visible-light irradiation in the presence of a sacrificial electron donor. Full characterization of this compound and of its singly and doubly reduced derivatives thanks to resonance Raman, EPR and (TD)DFT studies allowed us to localize the two electron-storage sites and to relate charge photoaccumulation with proton-coupled electron transfer processes.
  • Item
    Structure of Ni(OH)2 intermediates determines the efficiency of NiO-based photocathodes – a case study using novel mesoporous NiO nanostars
    (Cambridge : RSC, 2019) Wahyuono, Ruri Agung; Dellith, Andrea; Schmidt, Christa; Dellith, Jan; Ignaszak, Anna; Seyring, Martin; Rettenmayr, Markus; Fize, Jennifer; Artero, Vincent; Chavarot-Kerlidou, Murielle; Dietzek, Benjamin
    We report the wet chemical synthesis of mesoporous NiO nanostars (NS) as photocathode material for dye-sensitized solar cells (DSSCs). The growth mechanism of NiO NS as a new morphology of NiO is assessed by TEM and spectroscopic investigations. The NiO NS are obtained upon annealing of preformed β-Ni(OH)2 into pristine NiO with low defect concentrations and favorable electronic configuration for dye sensitization. The NiO NS consist of fibers self-assembled from nanoparticles yielding a specific surface area of 44.9 m2 g-1. They possess a band gap of 3.83 eV and can be sensitized by molecular photosensitizers bearing a range of anchoring groups, e.g. carboxylic acid, phosphonic acid, and pyridine. The performance of NiO NS-based photocathodes in photoelectrochemical application is compared to that of other NiO morphologies, i.e. nanoparticles and nanoflakes, under identical conditions. Sensitization of NiO NS with the benchmark organic dye P1 leads to p-DSSCs with a high photocurrent up to 3.91 mA cm-2 whilst the photoelectrochemical activity of the NiO NS photocathode in aqueous medium in the presence of an irreversible electron acceptor is reflected by generation of a photocurrent up to 23 μA cm-2 © 2019 The Royal Society of Chemistry.
  • Item
    Polymeric Photoacids Based on Naphthols—Design Criteria, Photostability, and Light-Mediated Release
    (Weinheim : Wiley-VCH, 2019) Wendler, Felix; Sittig, Maria; Tom, Jessica C.; Dietzek, Benjamin; Schacher, Felix H.
    The implementation of photoswitches within polymers offers an exciting toolbox in the design of light-responsive materials as irradiation can be controlled both spatially and temporally. Herein, we introduce a range of water-soluble copolymers featuring naphthol-based chromophores as photoacids in the side chain. With that, the resulting materials experience a drastic increase in acidity upon stimulation with UV light and we systematically studied how structure and distance of the photoacid from the copolymer backbone determines polymerizability, photo-response, and photostability. Briefly, we used RAFT (reversible addition–fragmentation chain transfer) polymerization to prepare copolymers consisting of nona(ethylene glycol) methyl ether methacrylate (MEO9MA) as water-soluble comonomer in combination with six different 1-naphthol-based (“N”) monomers. Thereby, we distinguish between methacrylates (NMA, NOeMA), methacrylamides (NMAm, NOeMAm), vinyl naphthol (VN), and post-polymerization modification based on [(1-hydroxynaphthalen-2-amido)ethyl]amine (NOeMAm, NAmeMAm). These P(MEO9MAx-co-“N”y) copolymers typically feature a 4:1 MEO9MA to “N” ratio and molar masses in the range of 10 kg mol−1. After synthesis and characterization by using NMR spectroscopy and size exclusion chromatography (SEC), we investigated how potential photo-cleavage or photo-degradation during irradiation depends on the type and distance of the linker to the copolymeric backbone and whether reversible excited state proton transfer (ESPT) occurs under these conditions. In our opinion, such materials will be strong assets as light-mediated proton sources in nanostructured environments, for example, for the site-specific creation of proton gradients. We therefore exemplarily incorporated NMA into an amphiphilic block copolymer and could demonstrate the light-mediated release of Nile red from micelles formed in water as selective solvent. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.